Prediction of Motor Characteristic Maps via Deep Operator Networks for Topology Optimization

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Magnetics Pub Date : 2024-10-10 DOI:10.1109/TMAG.2024.3477448
Hidenori Sasaki;Kazuhisa Iwata;Takahiro Sato;Yuki Sato
{"title":"Prediction of Motor Characteristic Maps via Deep Operator Networks for Topology Optimization","authors":"Hidenori Sasaki;Kazuhisa Iwata;Takahiro Sato;Yuki Sato","doi":"10.1109/TMAG.2024.3477448","DOIUrl":null,"url":null,"abstract":"This study proposes a novel methodology for directly training response surfaces of torque and magnet flux density distributions of interior permanent magnet synchronous motors (IPMSMs) under specified input conditions and predicting the speed-torque characteristics or torque wave. Existing models have low prediction accuracy when simultaneously integrating shape information and current conditions. To overcome this challenge and improve the prediction of motor characteristics, a new deep learning (DL) model that combines deep operator networks and convolutional neural networks is proposed. This advanced approach greatly improves the accuracy of motor characteristic predictions across varying current levels and rotational angles, achieving an 89.6% increase in accuracy compared to comparative methods. The model is successfully applied to parameter and topology optimization (TO), effectively maximizing the speed-torque characteristics of IPMSMs.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"60 12","pages":"1-5"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713327/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel methodology for directly training response surfaces of torque and magnet flux density distributions of interior permanent magnet synchronous motors (IPMSMs) under specified input conditions and predicting the speed-torque characteristics or torque wave. Existing models have low prediction accuracy when simultaneously integrating shape information and current conditions. To overcome this challenge and improve the prediction of motor characteristics, a new deep learning (DL) model that combines deep operator networks and convolutional neural networks is proposed. This advanced approach greatly improves the accuracy of motor characteristic predictions across varying current levels and rotational angles, achieving an 89.6% increase in accuracy compared to comparative methods. The model is successfully applied to parameter and topology optimization (TO), effectively maximizing the speed-torque characteristics of IPMSMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过用于拓扑优化的深度算子网络预测电机特性图
本研究提出了一种新方法,用于在指定输入条件下直接训练内部永磁同步电机(IPMSMs)的转矩和磁通密度分布响应曲面,并预测速度-转矩特性或转矩波。现有模型在同时整合形状信息和电流条件时,预测精度较低。为了克服这一难题并改进电机特性预测,我们提出了一种结合深度算子网络和卷积神经网络的新型深度学习(DL)模型。这种先进的方法大大提高了不同电流水平和旋转角度下电机特性预测的准确性,与其他方法相比,准确性提高了 89.6%。该模型成功应用于参数和拓扑优化 (TO),有效地最大化了 IPMSMs 的速度-扭矩特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Magnetics Publication Information IEEE Transactions on Magnetics Institutional Listings IEEE Magnetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1