$\mathcal {P}$owMix: A Versatile Regularizer for Multimodal Sentiment Analysis

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-11-11 DOI:10.1109/TASLP.2024.3496316
Efthymios Georgiou;Yannis Avrithis;Alexandros Potamianos
{"title":"$\\mathcal {P}$owMix: A Versatile Regularizer for Multimodal Sentiment Analysis","authors":"Efthymios Georgiou;Yannis Avrithis;Alexandros Potamianos","doi":"10.1109/TASLP.2024.3496316","DOIUrl":null,"url":null,"abstract":"Multimodal sentiment analysis (MSA) leverages heterogeneous data sources to interpret the complex nature of human sentiments. Despite significant progress in multimodal architecture design, the field lacks comprehensive regularization methods. This paper introduces \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix, a versatile embedding space regularizer that builds upon the strengths of unimodal mixing-based regularization approaches and introduces novel algorithmic components that are specifically tailored to multimodal tasks. \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix is integrated before the fusion stage of multimodal architectures and facilitates intra-modal mixing, such as mixing text with text, to act as a regularizer. \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix consists of five components: 1) a varying number of generated mixed examples, 2) mixing factor reweighting, 3) anisotropic mixing, 4) dynamic mixing, and 5) cross-modal label mixing. Extensive experimentation across benchmark MSA datasets and a broad spectrum of diverse architectural designs demonstrate the efficacy of \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix, as evidenced by consistent performance improvements over baselines and existing mixing methods. An in-depth ablation study highlights the critical contribution of each \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix component and how they synergistically enhance performance. Furthermore, algorithmic analysis demonstrates how \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix behaves in different scenarios, particularly comparing early versus late fusion architectures. Notably, \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix enhances overall performance without sacrificing model robustness or magnifying text dominance. It also retains its strong performance in situations of limited data. Our findings position \n<inline-formula><tex-math>$\\mathcal {P}$</tex-math></inline-formula>\nowMix as a promising versatile regularization strategy for MSA.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"5010-5023"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750299/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal sentiment analysis (MSA) leverages heterogeneous data sources to interpret the complex nature of human sentiments. Despite significant progress in multimodal architecture design, the field lacks comprehensive regularization methods. This paper introduces $\mathcal {P}$ owMix, a versatile embedding space regularizer that builds upon the strengths of unimodal mixing-based regularization approaches and introduces novel algorithmic components that are specifically tailored to multimodal tasks. $\mathcal {P}$ owMix is integrated before the fusion stage of multimodal architectures and facilitates intra-modal mixing, such as mixing text with text, to act as a regularizer. $\mathcal {P}$ owMix consists of five components: 1) a varying number of generated mixed examples, 2) mixing factor reweighting, 3) anisotropic mixing, 4) dynamic mixing, and 5) cross-modal label mixing. Extensive experimentation across benchmark MSA datasets and a broad spectrum of diverse architectural designs demonstrate the efficacy of $\mathcal {P}$ owMix, as evidenced by consistent performance improvements over baselines and existing mixing methods. An in-depth ablation study highlights the critical contribution of each $\mathcal {P}$ owMix component and how they synergistically enhance performance. Furthermore, algorithmic analysis demonstrates how $\mathcal {P}$ owMix behaves in different scenarios, particularly comparing early versus late fusion architectures. Notably, $\mathcal {P}$ owMix enhances overall performance without sacrificing model robustness or magnifying text dominance. It also retains its strong performance in situations of limited data. Our findings position $\mathcal {P}$ owMix as a promising versatile regularization strategy for MSA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
$\mathcal {P}$owMix:用于多模态情感分析的多功能正则化器
多模态情感分析(MSA)利用异构数据源来解读人类情感的复杂本质。尽管多模态架构设计取得了重大进展,但该领域仍缺乏全面的正则化方法。本文介绍了$\mathcal {P}$owMix,这是一种多功能嵌入空间正则化方法,它借鉴了基于单模态混合的正则化方法的优点,并引入了专门为多模态任务定制的新型算法组件。$\mathcal {P}$owMix 集成在多模态架构的融合阶段之前,并促进模态内混合,如文本与文本混合,以充当正则化器。{P}$owMix由五个部分组成:1)生成混合示例的不同数量;2)混合因子重新加权;3)各向异性混合;4)动态混合;5)跨模态标签混合。在基准 MSA 数据集和各种不同的架构设计中进行的广泛实验证明了 $mathcal {P}$owMix 的功效,其性能比基线和现有混合方法有了持续改善。一项深入的烧蚀研究强调了每个 $\mathcal {P}$owMix 组件的关键贡献,以及它们如何协同提高性能。此外,算法分析展示了$\mathcal {P}$owMix在不同场景下的表现,尤其是早期与晚期融合架构的比较。值得注意的是,$\mathcal {P}$owMix 在不牺牲模型鲁棒性或放大文本优势的情况下提高了整体性能。在数据有限的情况下,它也能保持强劲的性能。我们的研究结果表明,$\mathcal {P}$owMix 是一种很有前途的 MSA 多用途正则化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
IPDnet: A Universal Direct-Path IPD Estimation Network for Sound Source Localization MO-Transformer: Extract High-Level Relationship Between Words for Neural Machine Translation Online Neural Speaker Diarization With Target Speaker Tracking Blind Audio Bandwidth Extension: A Diffusion-Based Zero-Shot Approach Towards Efficient and Real-Time Piano Transcription Using Neural Autoregressive Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1