Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties

Q2 Energy Energy Informatics Pub Date : 2024-11-28 DOI:10.1186/s42162-024-00428-x
Abdallah Mohammed, Omar Saif, Maged A Abo‑Adma, Rasha Elazab
{"title":"Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties","authors":"Abdallah Mohammed,&nbsp;Omar Saif,&nbsp;Maged A Abo‑Adma,&nbsp;Rasha Elazab","doi":"10.1186/s42162-024-00428-x","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of electric vehicles (EVs) demands a robust and efficient charging infrastructure. To address this, we propose a particle swarm optimization algorithm designed for optimal placement and sizing of EV charging stations. This study hypothesizes that comprehensive consideration of uncertainties in vehicle types, user behaviors, road dynamics, and environmental impacts will enhance infrastructure effectiveness. Our method integrates data from road networks, driver patterns, station owners, and EV manufacturers to meet diverse charging requirements. Results indicate that 14 fast charging stations are needed along the studied freeway, with a total installation cost of $289,820 and annual operational costs of $4,223,050, leading to annual CO<sub>2</sub> emissions of 1,843,572.57 kg. This strategic approach balances technical, environmental, and economic criteria, providing an essential tool for policymakers and urban planners in establishing sustainable EV charging networks.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energyinformatics.springeropen.com/counter/pdf/10.1186/s42162-024-00428-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00428-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth of electric vehicles (EVs) demands a robust and efficient charging infrastructure. To address this, we propose a particle swarm optimization algorithm designed for optimal placement and sizing of EV charging stations. This study hypothesizes that comprehensive consideration of uncertainties in vehicle types, user behaviors, road dynamics, and environmental impacts will enhance infrastructure effectiveness. Our method integrates data from road networks, driver patterns, station owners, and EV manufacturers to meet diverse charging requirements. Results indicate that 14 fast charging stations are needed along the studied freeway, with a total installation cost of $289,820 and annual operational costs of $4,223,050, leading to annual CO2 emissions of 1,843,572.57 kg. This strategic approach balances technical, environmental, and economic criteria, providing an essential tool for policymakers and urban planners in establishing sustainable EV charging networks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑综合不确定性的电动汽车充电站规模和布局的多目标优化方法
电动汽车(EV)的快速发展需要一个强大而高效的充电基础设施。为此,我们提出了一种粒子群优化算法,旨在优化电动汽车充电站的布局和规模。本研究假设,综合考虑车辆类型、用户行为、道路动态和环境影响等方面的不确定性,将提高基础设施的效率。我们的方法整合了来自道路网络、驾驶员模式、充电站业主和电动汽车制造商的数据,以满足不同的充电需求。结果表明,所研究的高速公路沿线需要 14 个快速充电站,总安装成本为 289,820 美元,年运营成本为 4,223,050 美元,年二氧化碳排放量为 1,843,572.57 千克。这种战略方法兼顾了技术、环境和经济标准,为政策制定者和城市规划者建立可持续的电动汽车充电网络提供了重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
期刊最新文献
Building energy efficiency evaluation based on fusion weight method and grey clustering method Economic optimization scheduling of microgrid group based on chaotic mapping optimization BOA algorithm Loss reduction optimization strategies for medium and low-voltage distribution networks based on Intelligent optimization algorithms Multiobjective optimization for sizing and placing electric vehicle charging stations considering comprehensive uncertainties Multistep Brent oil price forecasting with a multi-aspect aeta-heuristic optimization and ensemble deep learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1