Abdul Shakoor, Javed Hussain, Sofia Siddique, Muhammad Arshad, Imtiaz Ahmad, Yasir A. Haleem, Areebah Abrar, Saqlain A. Shah
{"title":"Enhanced performance of graphene-based tin oxide hybrid nanostructures for ammonia gas detection","authors":"Abdul Shakoor, Javed Hussain, Sofia Siddique, Muhammad Arshad, Imtiaz Ahmad, Yasir A. Haleem, Areebah Abrar, Saqlain A. Shah","doi":"10.1007/s13204-024-03071-w","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia gas detection has garnered widespread attention in various fields, including food, environmental industries, and medical diagnostics. In this article, we present the synthesis of graphene-based tin oxide (graphene–SnO<sub>2</sub>) hybrid nanostructures using the hydrothermal method. Pristine tin oxide nanostructures and a series of graphene-based tin oxide hybrids containing 5 wt.%, 10 wt. %, 15 wt. %, and 20 wt. % graphene concentrations were fabricated to investigate their response as ammonia gas sensors. The X-ray diffraction and high-resolution transmission electron microscopy analysis revealed the tetragonal rutile crystal structure of both pristine SnO<sub>2</sub> and graphene–SnO<sub>2</sub> hybrid structures. The morphology of the synthesized structures was examined using scanning electron microscopy. Fourier transform infrared spectroscopy was employed to validate the functional groups present in the hybrid structures, while the band gap of the graphene–SnO<sub>2</sub> nanohybrid structures was determined using diffuse reflectance spectroscopy. X-ray photoelectron spectroscopy was utilized to investigate the chemical composition, electronic state, and bonding of the materials. Four probe current–voltage (I–V) measurements were conducted to investigate conductivity and ammonia-sensing behavior. Upon exposure to ammonia gas fumes, the pristine SnO<sub>2</sub> exhibited changes in current and resistance, ranging from 0.063 mA to 3.75 mA and 15.87 kΩ to 266.67 Ω, respectively. Similarly, the ammonia sensing behavior of hybrid structures containing 20 wt. % graphene showed changes in current and resistance, ranging from 5.42 mA to 37.8 mA and 0.18 kΩ to 26.45 Ω, respectively. These findings suggest that graphene–SnO<sub>2</sub> hybrid structures exhibit excellent conductivity when exposed to NH<sub>3</sub> gas, unlike their ammonia-absence counterparts.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 12","pages":"1125 - 1137"},"PeriodicalIF":3.6740,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03071-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia gas detection has garnered widespread attention in various fields, including food, environmental industries, and medical diagnostics. In this article, we present the synthesis of graphene-based tin oxide (graphene–SnO2) hybrid nanostructures using the hydrothermal method. Pristine tin oxide nanostructures and a series of graphene-based tin oxide hybrids containing 5 wt.%, 10 wt. %, 15 wt. %, and 20 wt. % graphene concentrations were fabricated to investigate their response as ammonia gas sensors. The X-ray diffraction and high-resolution transmission electron microscopy analysis revealed the tetragonal rutile crystal structure of both pristine SnO2 and graphene–SnO2 hybrid structures. The morphology of the synthesized structures was examined using scanning electron microscopy. Fourier transform infrared spectroscopy was employed to validate the functional groups present in the hybrid structures, while the band gap of the graphene–SnO2 nanohybrid structures was determined using diffuse reflectance spectroscopy. X-ray photoelectron spectroscopy was utilized to investigate the chemical composition, electronic state, and bonding of the materials. Four probe current–voltage (I–V) measurements were conducted to investigate conductivity and ammonia-sensing behavior. Upon exposure to ammonia gas fumes, the pristine SnO2 exhibited changes in current and resistance, ranging from 0.063 mA to 3.75 mA and 15.87 kΩ to 266.67 Ω, respectively. Similarly, the ammonia sensing behavior of hybrid structures containing 20 wt. % graphene showed changes in current and resistance, ranging from 5.42 mA to 37.8 mA and 0.18 kΩ to 26.45 Ω, respectively. These findings suggest that graphene–SnO2 hybrid structures exhibit excellent conductivity when exposed to NH3 gas, unlike their ammonia-absence counterparts.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.