Comprehensive Biomechanical Characterization of the Flexible Cat Spine via Finite Element Analysis, Experimental Observations, and Morphological Insights
Da Lu, Xueqing Wu, Yangyang Xu, Shijia Zhang, Le Zhang, Xin Huang, Baoqing Pei
{"title":"Comprehensive Biomechanical Characterization of the Flexible Cat Spine via Finite Element Analysis, Experimental Observations, and Morphological Insights","authors":"Da Lu, Xueqing Wu, Yangyang Xu, Shijia Zhang, Le Zhang, Xin Huang, Baoqing Pei","doi":"10.1007/s42235-024-00594-4","DOIUrl":null,"url":null,"abstract":"<div><p>Felids, during intense activities such as jumping and sprinting, adjust their posture by twisting and stretching their body to disperse limb impact and minimize injury. This self-stabilization mechanism has garnered significant attention for inspiring biometric robot design. This study investigates the flexibility and cushioning characteristics of a cat’s spine, focusing on its biomechanical properties. A high-fidelity 3D model was used to test the range of motion (ROM) under six conditions, simulate dorsiflexion to analyze stress distribution. The torsional and compressive stiffness were tested by using five cat spinal specimens. the flexibility principles of the flexible cat’s spine were explained via morphological insights. Results indicate that the cat spine has the least rotational stiffness in axial rotation, followed by extension and lateral bending, with a compressive stiffness of 53.62 ± 4.68 N/mm. Stress during dorsiflexion is evenly distributed across vertebrae. The vertebrae heights account for 90.34% of total spinal length with a mean height-to-width ratio of 1.04. Cats’ spines, with more articulations and elongated vertebrae, allow for significant twisting and bending, aiding in rapid body posture adjustments and impact mitigation. These biomechanical traits could inspire the design of robots for confined rescue operations.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2877 - 2892"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00594-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Felids, during intense activities such as jumping and sprinting, adjust their posture by twisting and stretching their body to disperse limb impact and minimize injury. This self-stabilization mechanism has garnered significant attention for inspiring biometric robot design. This study investigates the flexibility and cushioning characteristics of a cat’s spine, focusing on its biomechanical properties. A high-fidelity 3D model was used to test the range of motion (ROM) under six conditions, simulate dorsiflexion to analyze stress distribution. The torsional and compressive stiffness were tested by using five cat spinal specimens. the flexibility principles of the flexible cat’s spine were explained via morphological insights. Results indicate that the cat spine has the least rotational stiffness in axial rotation, followed by extension and lateral bending, with a compressive stiffness of 53.62 ± 4.68 N/mm. Stress during dorsiflexion is evenly distributed across vertebrae. The vertebrae heights account for 90.34% of total spinal length with a mean height-to-width ratio of 1.04. Cats’ spines, with more articulations and elongated vertebrae, allow for significant twisting and bending, aiding in rapid body posture adjustments and impact mitigation. These biomechanical traits could inspire the design of robots for confined rescue operations.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.