{"title":"A Finite Element Human Body Model of Chinese Midsize Male for Pedestrian Safety Analysis","authors":"Fuhao Mo, Ziyang Liang, Tengfei Tian, Guibing Li, Zhi Xiao, Sen Xiao","doi":"10.1007/s42235-024-00597-1","DOIUrl":null,"url":null,"abstract":"<div><p>The anthropometric differences between European/American and Chinese population are remarkable and have significant influences on pedestrian kinematics and injury response in vehicle crashes. Therefore, the current study aims to develop and validate a Finite Element (FE) human body model representing the anthropometry of Chinese 50th percentile adult male for pedestrian safety analysis and development of Chinese ATDs (Anthropomorphic Test Devices). Firstly, a human body pedestrian model, named as C-HBM (Chinese Human Body Model), was developed based on the medical image data of a volunteer selected according to both anthropometry and anatomy characteristics of 50th percentile Chinese adult male. Then, the biofidelity of the C-HBM pedestrian model was validated against cadaver impact test data reported in the literature at the segment and full-body level. Finally, the validated C-HBM pedestrian model was employed to predict Chinese pedestrian injuries in real world vehicle crashes. The results indicate that the C-HBM pedestrian model has a good capability in predicting human body mechanical response in cadaver tests and Chinese leg and thorax injuries in vehicle crashes. Kinematic analysis shows that the C-HBM pedestrian model has less sliding on the hood surface, shorter movement in the horizontal direction, and higher pelvis displacement in the vertical direction than cadavers and the pedestrian model in the anthropometry of westerner due to anthropometric differences in the lower limbs. The currently developed C-HBM pedestrian model provides a basic tool for vehicle safety design and evaluation in China market, and for development of Chinese ATDs.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2924 - 2941"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00597-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The anthropometric differences between European/American and Chinese population are remarkable and have significant influences on pedestrian kinematics and injury response in vehicle crashes. Therefore, the current study aims to develop and validate a Finite Element (FE) human body model representing the anthropometry of Chinese 50th percentile adult male for pedestrian safety analysis and development of Chinese ATDs (Anthropomorphic Test Devices). Firstly, a human body pedestrian model, named as C-HBM (Chinese Human Body Model), was developed based on the medical image data of a volunteer selected according to both anthropometry and anatomy characteristics of 50th percentile Chinese adult male. Then, the biofidelity of the C-HBM pedestrian model was validated against cadaver impact test data reported in the literature at the segment and full-body level. Finally, the validated C-HBM pedestrian model was employed to predict Chinese pedestrian injuries in real world vehicle crashes. The results indicate that the C-HBM pedestrian model has a good capability in predicting human body mechanical response in cadaver tests and Chinese leg and thorax injuries in vehicle crashes. Kinematic analysis shows that the C-HBM pedestrian model has less sliding on the hood surface, shorter movement in the horizontal direction, and higher pelvis displacement in the vertical direction than cadavers and the pedestrian model in the anthropometry of westerner due to anthropometric differences in the lower limbs. The currently developed C-HBM pedestrian model provides a basic tool for vehicle safety design and evaluation in China market, and for development of Chinese ATDs.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.