{"title":"Piezoelectric Field Effect Transistors (Piezo-FETs) for Bionic MEMS Sensors: A Literature Review","authors":"Chang Ge, Huawei Chen","doi":"10.1007/s42235-024-00602-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a literature review exploring the potential of piezoelectric field-effect transistors (piezo-FETs) as bionic microelectromechanical systems (MEMS). First, piezo-FETs are introduced as bionic counterparts to natural mechanoreceptors, highlighting their classic configuration and working principles. Then, this paper summarizes the existing research on piezo-FETs as sensors for pressure, inertial, and acoustic sensors. Material selections, design characteristics, and key performance metrics are reviewed to demonstrate the advantage of piezo-FETs over traditional piezoelectric sensors. After identifying the limitations in these existing studies, this paper proposes using bionic piezoelectric coupling structures in piezo-FETs to further enhance the sensing capabilities of these artificial mechanoreceptors. Experimentally validated manufacturing methods for the newly proposed piezo-FET structures are also reviewed, pointing out a novel, feasible, and impactful research direction on these bionic piezoelectric MEMS sensors.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 6","pages":"2717 - 2729"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00602-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a literature review exploring the potential of piezoelectric field-effect transistors (piezo-FETs) as bionic microelectromechanical systems (MEMS). First, piezo-FETs are introduced as bionic counterparts to natural mechanoreceptors, highlighting their classic configuration and working principles. Then, this paper summarizes the existing research on piezo-FETs as sensors for pressure, inertial, and acoustic sensors. Material selections, design characteristics, and key performance metrics are reviewed to demonstrate the advantage of piezo-FETs over traditional piezoelectric sensors. After identifying the limitations in these existing studies, this paper proposes using bionic piezoelectric coupling structures in piezo-FETs to further enhance the sensing capabilities of these artificial mechanoreceptors. Experimentally validated manufacturing methods for the newly proposed piezo-FET structures are also reviewed, pointing out a novel, feasible, and impactful research direction on these bionic piezoelectric MEMS sensors.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.