Enhanced peroxidase activity of modified MoS2-PEG nanoparticles: a facilitator for cefotaxime degradation

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2024-09-24 DOI:10.1007/s13204-024-03067-6
Manjunatha P. Talawar, Xu Yanbin, Kirankumar Shivasharanappa, Jayashree V. Hanchinalmath, Shefali Srivastava
{"title":"Enhanced peroxidase activity of modified MoS2-PEG nanoparticles: a facilitator for cefotaxime degradation","authors":"Manjunatha P. Talawar,&nbsp;Xu Yanbin,&nbsp;Kirankumar Shivasharanappa,&nbsp;Jayashree V. Hanchinalmath,&nbsp;Shefali Srivastava","doi":"10.1007/s13204-024-03067-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the enhancement of molybdenum disulfide (MoS₂) nanoparticles with polyethylene glycol (PEG) to improve peroxidase activity and antibiotic degradation capabilities. X-ray photoelectron spectroscopy confirmed successful modification, showing shifts in Mo and S binding energies. Scanning electron microscopy revealed an increase in nanoparticle size from 117.8–178.74 nm (MoS₂) to 99.73–200.20 µm (MoS₂-PEG), likely due to agglomeration. MoS₂-PEG demonstrated optimal peroxidase activity at 60 µg/mL concentration and 12 mM H₂O₂, with maximum efficiency at pH 5 and 30 °C, highlighting its pH sensitivity and moderate thermal stability. Under these conditions, MoS₂-PEG achieved nearly complete degradation of 10 mg/L Cefotaxime (CFX) within 312 min, identifying three metabolites (CFX 1, CFX 2, and CFX 3) in the degradation pathway. The study concludes that MoS₂-PEG nanoparticles are effective for peroxidase reactions and antibiotic degradation, positioning them as promising candidates for wastewater treatment. Their stability, reusability, and potential for sustainable applications underscore their value in developing cost-effective solutions for removing antibiotics from contaminated water sources.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 12","pages":"1065 - 1076"},"PeriodicalIF":3.6740,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03067-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the enhancement of molybdenum disulfide (MoS₂) nanoparticles with polyethylene glycol (PEG) to improve peroxidase activity and antibiotic degradation capabilities. X-ray photoelectron spectroscopy confirmed successful modification, showing shifts in Mo and S binding energies. Scanning electron microscopy revealed an increase in nanoparticle size from 117.8–178.74 nm (MoS₂) to 99.73–200.20 µm (MoS₂-PEG), likely due to agglomeration. MoS₂-PEG demonstrated optimal peroxidase activity at 60 µg/mL concentration and 12 mM H₂O₂, with maximum efficiency at pH 5 and 30 °C, highlighting its pH sensitivity and moderate thermal stability. Under these conditions, MoS₂-PEG achieved nearly complete degradation of 10 mg/L Cefotaxime (CFX) within 312 min, identifying three metabolites (CFX 1, CFX 2, and CFX 3) in the degradation pathway. The study concludes that MoS₂-PEG nanoparticles are effective for peroxidase reactions and antibiotic degradation, positioning them as promising candidates for wastewater treatment. Their stability, reusability, and potential for sustainable applications underscore their value in developing cost-effective solutions for removing antibiotics from contaminated water sources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强改性 MoS2-PEG 纳米粒子的过氧化物酶活性:头孢他啶降解的促进剂
本研究探讨了用聚乙二醇(PEG)增强二硫化钼(MoS₂)纳米粒子以提高过氧化物酶活性和抗生素降解能力的问题。X 射线光电子能谱证实了改性的成功,显示出 Mo 和 S 结合能的变化。扫描电子显微镜显示,纳米粒子的尺寸从 117.8-178.74 纳米(MoS₂)增加到 99.73-200.20 微米(MoS₂-PEG),这可能是由于团聚造成的。MoS₂-PEG 在 60 µg/mL 浓度和 12 mM H₂O₂条件下表现出最佳的过氧化物酶活性,在 pH 值为 5 和 30 °C 时效率最高,这突出表明了它对 pH 值的敏感性和适度的热稳定性。在这些条件下,MoS₂-PEG 在 312 分钟内几乎完全降解了 10 mg/L 头孢他啶(CFX),并在降解途径中发现了三种代谢产物(CFX 1、CFX 2 和 CFX 3)。研究得出结论,MoS₂-PEG 纳米粒子能有效促进过氧化物酶反应和抗生素降解,因此有望成为废水处理的候选材料。它们的稳定性、可重复使用性和可持续应用的潜力都突出表明了它们在开发具有成本效益的解决方案以去除受污染水源中的抗生素方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Advances in silver nanoparticles: unraveling biological activities, mechanisms of action, and toxicity Comparative evaluation of antibacterial efficacy of silver nanoparticles synthesized with Cannabis sativa extract at different concentrations Magnetic and electrochemical characterization of magnetite nanoparticles modified with tetrahydroxyquinone Retraction Note: FeNi nanotubes: perspective tool for targeted delivery Structural, optical, and down-conversion properties of 100% pure vermilion-emitting Y2O3:Sm3+, Gd3+ for latent wLED applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1