The Quantified Galloway Ternary Diagram of Delta Morphology

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-11-26 DOI:10.1029/2024JF007878
Juan F. Paniagua-Arroyave, Jaap H. Nienhuis
{"title":"The Quantified Galloway Ternary Diagram of Delta Morphology","authors":"Juan F. Paniagua-Arroyave,&nbsp;Jaap H. Nienhuis","doi":"10.1029/2024JF007878","DOIUrl":null,"url":null,"abstract":"<p>Waves, rivers, and tides shape delta morphology. Recent studies have enabled predictions of their relative influence on deltas globally, but methods and associated uncertainties remain poorly known. Here, we address that gap and show how to quantify delta morphology within the Galloway ternary diagram of river, wave, and tidal sediment fluxes. We assess delta morphology predictions compared to observations for 31 deltas globally and find a median error of 4% (standard deviation of 11%) in the river, tide, or wave-driven sediment fluxes. Relative uncertainties are greatest for mixed-process deltas (e.g., Sinu, error of 49%) and tend to decrease for end-member morphologies where either wave, tide, or river sediment fluxes dominate (e.g., Fly, error of 0.2%). Prediction uncertainties for delta morphologic metrics are more considerable: the delta shoreline protrusion angles set by wave influence have a median error of 45%, the delta channel widening from tides 25%, and the number of distributary channels 86%. Larger sources of prediction uncertainty are (a) delta morphology data, for example, delta slopes that modulate tidal fluxes, (b) data on river sediment flux distribution between individual delta river outlets, and (c) theoretical basis behind fluvial and tidal dominance. Broadly, these methods will help improve delta morphology predictions and assess how natural and anthropogenic forces affect morphologic change.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007878","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007878","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Waves, rivers, and tides shape delta morphology. Recent studies have enabled predictions of their relative influence on deltas globally, but methods and associated uncertainties remain poorly known. Here, we address that gap and show how to quantify delta morphology within the Galloway ternary diagram of river, wave, and tidal sediment fluxes. We assess delta morphology predictions compared to observations for 31 deltas globally and find a median error of 4% (standard deviation of 11%) in the river, tide, or wave-driven sediment fluxes. Relative uncertainties are greatest for mixed-process deltas (e.g., Sinu, error of 49%) and tend to decrease for end-member morphologies where either wave, tide, or river sediment fluxes dominate (e.g., Fly, error of 0.2%). Prediction uncertainties for delta morphologic metrics are more considerable: the delta shoreline protrusion angles set by wave influence have a median error of 45%, the delta channel widening from tides 25%, and the number of distributary channels 86%. Larger sources of prediction uncertainty are (a) delta morphology data, for example, delta slopes that modulate tidal fluxes, (b) data on river sediment flux distribution between individual delta river outlets, and (c) theoretical basis behind fluvial and tidal dominance. Broadly, these methods will help improve delta morphology predictions and assess how natural and anthropogenic forces affect morphologic change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三角洲形态的量化加洛韦三元图
波浪、河流和潮汐塑造了三角洲的形态。最近的研究能够预测它们对全球三角洲的相对影响,但对其方法和相关的不确定性仍然知之甚少。在此,我们将弥补这一不足,并展示如何在加洛韦河流、波浪和潮汐沉积物通量三元图中量化三角洲形态。我们对全球 31 个三角洲的三角洲形态预测与观测结果进行了评估,发现河流、潮汐或波浪驱动的沉积通量的中位误差为 4%(标准偏差为 11%)。混合过程三角洲的相对不确定性最大(如西努三角洲,误差为 49%),而波浪、潮汐或河流泥沙通量占主导地位的末端形态的相对不确定性趋于减小(如弗莱三角洲,误差为 0.2%)。三角洲形态指标的预测不确定性更大:由波浪影响确定的三角洲海岸线突出角的中位误差为 45%,潮汐造成的三角洲河道拓宽的中位误差为 25%,支流河道数量的中位误差为 86%。预测不确定性的更大来源是:(a)三角洲形态数据,例如调节潮汐通量的三角洲坡度;(b)三角洲各河流出口之间的河流泥沙通量分布数据;以及(c)河流和潮汐主导地位背后的理论基础。总体而言,这些方法将有助于改进三角洲形态预测,并评估自然和人为力量如何影响形态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Suspended Sediment Transport and Storage in Arctic Deltas Modeling Phase Separation in Grain-Fluid Mixture Flows by a Depth-Averaged Approach With Dilatancy Effects Glacial Erosion Rates Since the Last Glacial Maximum for the Former Argentino Glacier and Present-Day Upsala Glacier, Patagonia A New Approach to Account for Species-Specific Sand Capture by Plants in an Aeolian Sediment Transport and Coastal Dune Building Model Probabilistic Identification of Debris-Flow Pathways in Mountain Fans Within a Stochastic Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1