Mohammed A. Atiea, Abdullah M. Shaheen, Abdullah Alassaf, Ibrahim Alsaleh
{"title":"Enhanced Solar Power Prediction Models With Integrating Meteorological Data Toward Sustainable Energy Forecasting","authors":"Mohammed A. Atiea, Abdullah M. Shaheen, Abdullah Alassaf, Ibrahim Alsaleh","doi":"10.1155/er/8022398","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Sustainable energy management hinges on precise forecasting of renewable energy sources, with a specific focus on solar power. To enhance resource allocation and grid integration, this study introduces an innovative hybrid approach that integrates meteorological data into prediction models for photovoltaic (PV) power generation. A thorough analysis is performed utilizing the Desert Knowledge Australia Solar Centre (DKASC) Hanwha Solar dataset encompassing PV output power and meteorological variables from sensors. The aim is to develop a distinctive hybrid predictive model framework by integrating feature selection techniques with various regression algorithms. This model, referred to as the PV power generation predictive model (PVPGPM), utilizes meteorological data specific to the DKASC. In this study, various feature selection techniques are implemented, including Pearson correlation (PC), variance inflation factor (VIF), mutual information (MI), step forward selection (SFS), backward elimination (BE), recursive feature elimination (RFE), and embedded method (EM), to identify the most influential factors for PV power prediction. Furthermore, a hybrid predictive model integrating multiple regression algorithms is introduced, including linear regression, ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Elastic Net, Extra Trees Regressor, random forest regressor, gradient boosting (GB) regressor, eXtreme Gradient Boosting (XGBoost) Regressor, and a hybrid model thereof. Extensive experimentation and evaluation showcase the effectiveness of the proposed approach in achieving high prediction accuracy. Results demonstrate that the hybrid model comprising XGBoost Regressor, Extra Trees Regressor, and GB regressor surpasses other regression algorithms, yielding a minimal root mean square error (RMSE) of 0.108735 and the highest <i>R</i>-squared (<i>R</i><sup>2</sup>) value of 0.996228. The findings underscore the importance of integrating meteorological insights into renewable energy forecasting for sustainable energy planning and management.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8022398","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8022398","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable energy management hinges on precise forecasting of renewable energy sources, with a specific focus on solar power. To enhance resource allocation and grid integration, this study introduces an innovative hybrid approach that integrates meteorological data into prediction models for photovoltaic (PV) power generation. A thorough analysis is performed utilizing the Desert Knowledge Australia Solar Centre (DKASC) Hanwha Solar dataset encompassing PV output power and meteorological variables from sensors. The aim is to develop a distinctive hybrid predictive model framework by integrating feature selection techniques with various regression algorithms. This model, referred to as the PV power generation predictive model (PVPGPM), utilizes meteorological data specific to the DKASC. In this study, various feature selection techniques are implemented, including Pearson correlation (PC), variance inflation factor (VIF), mutual information (MI), step forward selection (SFS), backward elimination (BE), recursive feature elimination (RFE), and embedded method (EM), to identify the most influential factors for PV power prediction. Furthermore, a hybrid predictive model integrating multiple regression algorithms is introduced, including linear regression, ridge regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Elastic Net, Extra Trees Regressor, random forest regressor, gradient boosting (GB) regressor, eXtreme Gradient Boosting (XGBoost) Regressor, and a hybrid model thereof. Extensive experimentation and evaluation showcase the effectiveness of the proposed approach in achieving high prediction accuracy. Results demonstrate that the hybrid model comprising XGBoost Regressor, Extra Trees Regressor, and GB regressor surpasses other regression algorithms, yielding a minimal root mean square error (RMSE) of 0.108735 and the highest R-squared (R2) value of 0.996228. The findings underscore the importance of integrating meteorological insights into renewable energy forecasting for sustainable energy planning and management.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system