A virtual scalable model of the Hepatic Lobule for acetaminophen hepatotoxicity prediction

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-11-28 DOI:10.1038/s41746-024-01349-5
Stelian Camara Dit Pinto, Jalal Cherkaoui, Debarshi Ghosh, Valentine Cazaubon, Kenza E. Benzeroual, Steven M. Levine, Mohammed Cherkaoui, Gagan K. Sood, Sharmila Anandasabapathy, Sadhna Dhingra, John M. Vierling, Nicolas R. Gallo
{"title":"A virtual scalable model of the Hepatic Lobule for acetaminophen hepatotoxicity prediction","authors":"Stelian Camara Dit Pinto, Jalal Cherkaoui, Debarshi Ghosh, Valentine Cazaubon, Kenza E. Benzeroual, Steven M. Levine, Mohammed Cherkaoui, Gagan K. Sood, Sharmila Anandasabapathy, Sadhna Dhingra, John M. Vierling, Nicolas R. Gallo","doi":"10.1038/s41746-024-01349-5","DOIUrl":null,"url":null,"abstract":"Addressing drug-induced liver injury is crucial in drug development, often causing Phase III trial failures and market withdrawals. Traditional animal models fail to predict human liver toxicity accurately. Virtual twins of human organs present a promising solution. We introduce the Virtual Hepatic Lobule, a foundational element of the Living Liver, a multi-scale liver virtual twin. This model integrates blood flow dynamics and an acetaminophen-induced injury model to predict hepatocyte injury patterns specific to patients. By incorporating metabolic zonation, our predictions align with clinical zonal hepatotoxicity observations. This methodology advances the development of a human liver virtual twin, aiding in the prediction and validation of drug-induced liver injuries.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-12"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01349-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01349-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing drug-induced liver injury is crucial in drug development, often causing Phase III trial failures and market withdrawals. Traditional animal models fail to predict human liver toxicity accurately. Virtual twins of human organs present a promising solution. We introduce the Virtual Hepatic Lobule, a foundational element of the Living Liver, a multi-scale liver virtual twin. This model integrates blood flow dynamics and an acetaminophen-induced injury model to predict hepatocyte injury patterns specific to patients. By incorporating metabolic zonation, our predictions align with clinical zonal hepatotoxicity observations. This methodology advances the development of a human liver virtual twin, aiding in the prediction and validation of drug-induced liver injuries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于对乙酰氨基酚肝毒性预测的虚拟可扩展肝叶模型
解决药物引起的肝损伤问题在药物开发过程中至关重要,这往往会导致 III 期试验失败和退出市场。传统的动物模型无法准确预测人体肝脏的毒性。人体器官虚拟双胞胎是一种很有前景的解决方案。我们介绍了虚拟肝叶,它是多尺度肝脏虚拟孪生模型 "活肝 "的基础元素。该模型整合了血流动力学和对乙酰氨基酚诱导的损伤模型,可预测患者特有的肝细胞损伤模式。通过结合代谢分区,我们的预测结果与临床分区肝毒性观察结果一致。这种方法推动了人类肝脏虚拟孪生的发展,有助于预测和验证药物诱导的肝损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Natural language processing in mixed-methods evaluation of a digital sleep-alcohol intervention for young adults A machine-learned model for predicting weight loss success using weight change features early in treatment An optimal antibiotic selection framework for Sepsis patients using Artificial Intelligence Semi automatic quantification of REM sleep without atonia in natural sleep environment A virtual scalable model of the Hepatic Lobule for acetaminophen hepatotoxicity prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1