Investigating the Mechanism of Neurotoxic Effects of PFAS in Differentiated Neuronal Cells through Transcriptomics and Lipidomics Analysis.

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-27 DOI:10.1021/acschemneuro.4c00652
Logan Running, Judith R Cristobal, Charikleia Karageorgiou, Michelle Camdzic, John Michael N Aguilar, Omer Gokcumen, Diana S Aga, G Ekin Atilla-Gokcumen
{"title":"Investigating the Mechanism of Neurotoxic Effects of PFAS in Differentiated Neuronal Cells through Transcriptomics and Lipidomics Analysis.","authors":"Logan Running, Judith R Cristobal, Charikleia Karageorgiou, Michelle Camdzic, John Michael N Aguilar, Omer Gokcumen, Diana S Aga, G Ekin Atilla-Gokcumen","doi":"10.1021/acschemneuro.4c00652","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health. Following a 30 μM exposure for 24 h, PFAS accumulation ranged from 40-6500 ng/mg of protein. Transcriptomic analysis revealed 721 differentially expressed genes (DEGs) across treatments (<i>p</i><sub>adj</sub> < 0.05), with 11 DEGs shared among all PFAS exposures, indicating potential biomarkers for neuronal PFAS toxicity. PFOA-treated cells showed downregulation of genes involved in synaptic growth and neural function, while PFOS, PFDS, 8:2 FTS, and 8:2 FTOH exposures resulted in the upregulation of genes related to hypoxia response and amino acid metabolism. Lipidomic profiling further demonstrated significant increases in fatty acid levels with PFDA, PFDS, and 8:2 FTS and depletion of triacylglycerols with 8:2 FTOH treatments. These findings suggest that the neurotoxic effects of PFAS are structurally dependent, offering insights into the molecular processes that may drive PFAS-induced neuronal dysfunction.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluorinated alkyl substances (PFAS) are pervasive environmental contaminants that bioaccumulate in tissues and pose risks to human health. Increasing evidence links PFAS to neurodegenerative and behavioral disorders, yet the underlying mechanisms of their effects on neuronal function remain largely unexplored. In this study, we utilized SH-SY5Y neuroblastoma cells, differentiated into neuronal-like cells, to investigate the impact of six PFAS compounds─perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorodecanesulfonic acid (PFDS), 8:2 fluorotelomer sulfonate (8:2 FTS), and 8:2 fluorotelomer alcohol (8:2 FTOH)─on neuronal health. Following a 30 μM exposure for 24 h, PFAS accumulation ranged from 40-6500 ng/mg of protein. Transcriptomic analysis revealed 721 differentially expressed genes (DEGs) across treatments (padj < 0.05), with 11 DEGs shared among all PFAS exposures, indicating potential biomarkers for neuronal PFAS toxicity. PFOA-treated cells showed downregulation of genes involved in synaptic growth and neural function, while PFOS, PFDS, 8:2 FTS, and 8:2 FTOH exposures resulted in the upregulation of genes related to hypoxia response and amino acid metabolism. Lipidomic profiling further demonstrated significant increases in fatty acid levels with PFDA, PFDS, and 8:2 FTS and depletion of triacylglycerols with 8:2 FTOH treatments. These findings suggest that the neurotoxic effects of PFAS are structurally dependent, offering insights into the molecular processes that may drive PFAS-induced neuronal dysfunction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过转录组学和脂质组学分析研究全氟辛烷磺酸在分化神经元细胞中的神经毒性作用机制。
全氟和多氟烷基物质(PFAS)是一种普遍存在的环境污染物,可在组织中进行生物累积,对人类健康构成风险。越来越多的证据表明,PFAS 与神经退行性疾病和行为失调有关,但其影响神经元功能的潜在机制在很大程度上仍未得到探索。在本研究中,我们利用分化成神经元样细胞的 SH-SY5Y 神经母细胞瘤细胞,研究了六种 PFAS 化合物(全氟辛酸 (PFOA)、全氟辛烷磺酸 (PFOS)、全氟癸酸 (PFDA)、全氟癸烷磺酸 (PFDS)、8:2氟甲苯磺酸盐(8:2 FTS)和8:2氟甲苯醇(8:2 FTOH)对神经元健康的影响。暴露于 30 μM 的 PFAS 24 小时后,PFAS 的累积量为 40-6500 纳克/毫克蛋白质。转录组分析显示,在不同处理中存在721个差异表达基因(DEGs)(padj < 0.05),其中11个DEGs在所有PFAS暴露中共享,这表明神经元PFAS毒性具有潜在的生物标志物。PFOA处理过的细胞显示出突触生长和神经功能相关基因的下调,而PFOS、PFDS、8:2 FTS和8:2 FTOH暴露则导致缺氧反应和氨基酸代谢相关基因的上调。脂质组分析进一步表明,PFDA、PFDS 和 8:2 FTS 会显著增加脂肪酸水平,而 8:2 FTOH 会消耗三酰甘油。这些研究结果表明,全氟辛烷磺酸的神经毒性效应取决于其结构,从而为了解可能导致全氟辛烷磺酸诱发神经元功能障碍的分子过程提供了线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Patent Review of Novel Biologics Targeting Opioid Use Disorder (2018-2024). Lipopolysaccharide Effects on Neurotransmission: Understanding Implications for Depression. Imidazo[2,1-b][1,3]thiazine Derivatives as Potential Modulators of Alpha-Synuclein Amyloid Aggregation. Investigating the Mechanism of Neurotoxic Effects of PFAS in Differentiated Neuronal Cells through Transcriptomics and Lipidomics Analysis. Psychedelics and Entactogens: Call for Papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1