Zhehao Zhang, Yao Hao, Xiyao Jin, Deshan Yang, Ulugbek S Kamilov, Geoffrey D Hugo
{"title":"Fast motion-compensated reconstruction for 4D-CBCT using deep learning-based groupwise registration.","authors":"Zhehao Zhang, Yao Hao, Xiyao Jin, Deshan Yang, Ulugbek S Kamilov, Geoffrey D Hugo","doi":"10.1088/2057-1976/ad97c1","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Previous work has that deep learning (DL)-enhanced 4D cone beam computed tomography (4D-CBCT) images improve motion modeling and subsequent motion-compensated (MoCo) reconstruction for 4D-CBCT. However, building the motion model at treatment time via conventional deformable image registration (DIR) methods is not temporally feasible. This work aims to improve the efficiency of 4D-CBCT MoCo reconstruction using DL-based registration for the rapid generation of a motion model prior to treatment.<i>Approach.</i>An artifact-reduction DL model was first used to improve the initial 4D-CBCT reconstruction by reducing streaking artifacts. Based on the artifact-reduced phase images, a groupwise DIR employing DL was used to estimate the inter-phase motion model. Two DL DIR models using different learning strategies were employed: (1) a patient-specific one-shot DIR model which was trained from scratch only using the images to be registered, and (2) a population DIR model which was pre-trained using collected 4D-CT images from 35 patients. The registration accuracy of two DL DIR models was assessed and compared to a conventional groupwise DIR approach implemented in the Elastix toolbox using the publicly available DIR-Lab dataset, a Monte Carlo simulation dataset from the SPARE challenge, and two clinical cases.<i>Main results.</i>The patient-specific DIR model and the population DIR model demonstrated registration accuracy comparable to the conventional state-of-the-art methods on the DIR-Lab dataset. No significant difference in image quality was observed between the final MoCo reconstructions using the patient-specific model and population model for motion modeling, compared to using the conventional approach. The average runtime (hh:mm:ss) of the entire MoCo reconstruction on SPARE dataset was reduced from 01:37:26 using conventional DIR method to 00:10:59 using patient-specific model and 00:01:05 using the pre-trained population model.<i>Significance.</i>DL-based registration methods can improve the efficiency in generating motion models for 4D-CBCT without compromising the performance of final MoCo reconstruction.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11667241/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad97c1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Previous work has that deep learning (DL)-enhanced 4D cone beam computed tomography (4D-CBCT) images improve motion modeling and subsequent motion-compensated (MoCo) reconstruction for 4D-CBCT. However, building the motion model at treatment time via conventional deformable image registration (DIR) methods is not temporally feasible. This work aims to improve the efficiency of 4D-CBCT MoCo reconstruction using DL-based registration for the rapid generation of a motion model prior to treatment.Approach.An artifact-reduction DL model was first used to improve the initial 4D-CBCT reconstruction by reducing streaking artifacts. Based on the artifact-reduced phase images, a groupwise DIR employing DL was used to estimate the inter-phase motion model. Two DL DIR models using different learning strategies were employed: (1) a patient-specific one-shot DIR model which was trained from scratch only using the images to be registered, and (2) a population DIR model which was pre-trained using collected 4D-CT images from 35 patients. The registration accuracy of two DL DIR models was assessed and compared to a conventional groupwise DIR approach implemented in the Elastix toolbox using the publicly available DIR-Lab dataset, a Monte Carlo simulation dataset from the SPARE challenge, and two clinical cases.Main results.The patient-specific DIR model and the population DIR model demonstrated registration accuracy comparable to the conventional state-of-the-art methods on the DIR-Lab dataset. No significant difference in image quality was observed between the final MoCo reconstructions using the patient-specific model and population model for motion modeling, compared to using the conventional approach. The average runtime (hh:mm:ss) of the entire MoCo reconstruction on SPARE dataset was reduced from 01:37:26 using conventional DIR method to 00:10:59 using patient-specific model and 00:01:05 using the pre-trained population model.Significance.DL-based registration methods can improve the efficiency in generating motion models for 4D-CBCT without compromising the performance of final MoCo reconstruction.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.