Guangyu Tong , Gloria D. Coronado , Chenxi Li , Fan Li
{"title":"Randomized in error in pragmatic clinical trials","authors":"Guangyu Tong , Gloria D. Coronado , Chenxi Li , Fan Li","doi":"10.1016/j.cct.2024.107764","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Pragmatic trials that combine electronic health record data and patient-reported data may be subject to selection bias due to the differential post-randomization exclusion of participants who are randomized in error. Such situations are often caused by inevitable reasons, such as incomplete patient medical records at the pre-randomization stage. This can lead to participants in the intervention arm being identified as ineligible after randomization, while randomized-in-error participants in the usual care are often not discernable. The differential exclusion can present analytic challenges and threaten result validity.</div></div><div><h3>Methods</h3><div>Under the potential outcomes framework, we developed a Bayesian model that jointly identifies the randomized-in-error status and estimates the average treatment effect among participants not randomized in error. We designed simulation studies with hypothesized proportions of 5 %–15 % randomization in error to evaluate the performance of our model across scenarios where the outcomes of participants randomized in error were either measured or unmeasured. Comparisons were made to intention-to-treat and covariate-adjusted estimators.</div></div><div><h3>Results</h3><div>Simulation results show satisfactory performance of our proposed models, where the estimated average treatment effects among participants not randomized in error have low bias (<1 %) and close to 95 % coverage. Estimates from the alternative approaches can exhibit notable biases and low coverage.</div></div><div><h3>Conclusions</h3><div>Differential exclusion in pragmatic clinical trials after randomization can lead to selection bias. Under certain assumptions, Bayesian methods provide a feasible solution to jointly identify randomized-in-error status and estimate the average treatment effect among participants not randomized in error, ensuring more reliable and valid inferences about intervention effects.</div></div>","PeriodicalId":10636,"journal":{"name":"Contemporary clinical trials","volume":"148 ","pages":"Article 107764"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary clinical trials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1551714424003471","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Pragmatic trials that combine electronic health record data and patient-reported data may be subject to selection bias due to the differential post-randomization exclusion of participants who are randomized in error. Such situations are often caused by inevitable reasons, such as incomplete patient medical records at the pre-randomization stage. This can lead to participants in the intervention arm being identified as ineligible after randomization, while randomized-in-error participants in the usual care are often not discernable. The differential exclusion can present analytic challenges and threaten result validity.
Methods
Under the potential outcomes framework, we developed a Bayesian model that jointly identifies the randomized-in-error status and estimates the average treatment effect among participants not randomized in error. We designed simulation studies with hypothesized proportions of 5 %–15 % randomization in error to evaluate the performance of our model across scenarios where the outcomes of participants randomized in error were either measured or unmeasured. Comparisons were made to intention-to-treat and covariate-adjusted estimators.
Results
Simulation results show satisfactory performance of our proposed models, where the estimated average treatment effects among participants not randomized in error have low bias (<1 %) and close to 95 % coverage. Estimates from the alternative approaches can exhibit notable biases and low coverage.
Conclusions
Differential exclusion in pragmatic clinical trials after randomization can lead to selection bias. Under certain assumptions, Bayesian methods provide a feasible solution to jointly identify randomized-in-error status and estimate the average treatment effect among participants not randomized in error, ensuring more reliable and valid inferences about intervention effects.
期刊介绍:
Contemporary Clinical Trials is an international peer reviewed journal that publishes manuscripts pertaining to all aspects of clinical trials, including, but not limited to, design, conduct, analysis, regulation and ethics. Manuscripts submitted should appeal to a readership drawn from disciplines including medicine, biostatistics, epidemiology, computer science, management science, behavioural science, pharmaceutical science, and bioethics. Full-length papers and short communications not exceeding 1,500 words, as well as systemic reviews of clinical trials and methodologies will be published. Perspectives/commentaries on current issues and the impact of clinical trials on the practice of medicine and health policy are also welcome.