Peijing Yang , Qinghua Song , Lujie Zhang , Zhanqiang Liu , Haifeng Ma
{"title":"Numerical modeling and simulation for microneedles drug delivery: A novel comprehensive swelling-obstruction-mechanics model","authors":"Peijing Yang , Qinghua Song , Lujie Zhang , Zhanqiang Liu , Haifeng Ma","doi":"10.1016/j.ejpb.2024.114583","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogel microneedles have attracted significant attention in drug delivery due to their non-invasiveness and efficient administration. However, a thorough understanding of the drug transport mechanism is essential to achieve controlled drug delivery and geometry optimization of microneedles. In this study, a new swelling-obstruction-mechanics model is presented to describe the swelling and drug release behavior of hydrogel microneedles. The model integrates the swelling kinetics, the obstruction scaling of drug molecules, and the mechanical properties of hydrogel and skin and reveals the effects of swelling of the microneedle matrix and drug molecules on drug release. Subsequently, numerical simulations were conducted using the model, which enabled the optimization of hydrogel microneedle design parameters by adjusting the input variables. The results show that the geometric parameters of microneedles, especially the cross-sectional shape, have a significant effect on the drug release performance. Nevertheless, the parameters affect each other and need to be considered in the selection of a variety of factors. Additionally, penetration depth significantly affects drug release efficiency, highlighting the need for auxiliary application devices. In summary, the model advances both theoretical understanding and practical design of hydrogel microneedles, identifying key factors in drug release and optimizing their efficiency and reliability for clinical applications.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"206 ","pages":"Article 114583"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124004090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogel microneedles have attracted significant attention in drug delivery due to their non-invasiveness and efficient administration. However, a thorough understanding of the drug transport mechanism is essential to achieve controlled drug delivery and geometry optimization of microneedles. In this study, a new swelling-obstruction-mechanics model is presented to describe the swelling and drug release behavior of hydrogel microneedles. The model integrates the swelling kinetics, the obstruction scaling of drug molecules, and the mechanical properties of hydrogel and skin and reveals the effects of swelling of the microneedle matrix and drug molecules on drug release. Subsequently, numerical simulations were conducted using the model, which enabled the optimization of hydrogel microneedle design parameters by adjusting the input variables. The results show that the geometric parameters of microneedles, especially the cross-sectional shape, have a significant effect on the drug release performance. Nevertheless, the parameters affect each other and need to be considered in the selection of a variety of factors. Additionally, penetration depth significantly affects drug release efficiency, highlighting the need for auxiliary application devices. In summary, the model advances both theoretical understanding and practical design of hydrogel microneedles, identifying key factors in drug release and optimizing their efficiency and reliability for clinical applications.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.