Jitka Široká, Anita Ament, Václav Mik, Tomáš Pospíšil, Michaela Kralová, Chao Zhang, Markéta Pernisová, Michal Karady, Vladimira Nožková, Yuho Nishizato, Takuya Kaji, Rina Saito, Mohamed Htitich, Kristýna Floková, Claus Wasternack, Miroslav Strnad, Minoru Ueda, Ondřej Novák, Federica Brunoni
{"title":"Amide conjugates of the jasmonate precursor cis-OPDA regulate its homeostasis during plant stress responses.","authors":"Jitka Široká, Anita Ament, Václav Mik, Tomáš Pospíšil, Michaela Kralová, Chao Zhang, Markéta Pernisová, Michal Karady, Vladimira Nožková, Yuho Nishizato, Takuya Kaji, Rina Saito, Mohamed Htitich, Kristýna Floková, Claus Wasternack, Miroslav Strnad, Minoru Ueda, Ondřej Novák, Federica Brunoni","doi":"10.1093/plphys/kiae636","DOIUrl":null,"url":null,"abstract":"<p><p>Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating 'defense versus growth' responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1 (COI1)-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA-amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 (GH3) and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1 (ILR1)/ILR1-like (ILL) families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae636","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating 'defense versus growth' responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) acts independently of CORONATIVE INSENSITIVE 1 (COI1)-mediated JA signaling in several stress-induced and developmental processes. However, its perception and metabolism are only partially understood. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected years ago in wounded leaves of flowering plants, opening up the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp accumulating in response to biotic and abiotic stress in Arabidopsis (Arabidopsis thaliana). The OPDA-amino acid conjugates displayed cis-OPDA-related plant responses in a JA-Ile-dependent manner. We also showed that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are mediated by members of the amidosynthetase GRETCHEN HAGEN 3 (GH3) and the amidohydrolase INDOLE-3-ACETYL-LEUCINE RESISTANT 1 (ILR1)/ILR1-like (ILL) families. Thus, OPDA amino acid conjugates function in the catabolism or temporary storage of cis-OPDA in stress responses instead of acting as chemical signals per se.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.