C5aR expression in kidney tubules, macrophages and fibrosis.

IF 0.6 4区 生物学 Q4 CELL BIOLOGY Journal of Histotechnology Pub Date : 2024-11-28 DOI:10.1080/01478885.2024.2430041
Carolyn Dunlap, Niky Zhao, Linda S Ertl, Thomas J Schall, Kathleen M C Sullivan
{"title":"C5aR expression in kidney tubules, macrophages and fibrosis.","authors":"Carolyn Dunlap, Niky Zhao, Linda S Ertl, Thomas J Schall, Kathleen M C Sullivan","doi":"10.1080/01478885.2024.2430041","DOIUrl":null,"url":null,"abstract":"<p><p>The anaphylatoxin C5a and its receptor C5aR (CD88) are complement pathway effectors implicated in renal diseases, including ANCA-associated vasculitis. We investigated the kidney expression of C5aR and a second C5a receptor C5L2 by using immunohistochemistry, in situ hybridization, and spatial gene expression on formalin-fixed, paraffin-embedded human and mouse kidney. C5aR was detected on interstitial macrophages and in multiple tubular regions, including distal and proximal; C5L2 had a similar expression pattern. The 5/6 nephrectomy model of chronic kidney injury exhibited increased C5aR expression by infiltrating cells within the fibrotic regions. C5aR expression was confirmed on human leukocytes and in vitro differentiated macrophages by flow cytometry, and treatment with C5a induced the expression of chemokines and remodeling factors by macrophages, including CCL-3/-4/-7, -20, MMP-1/-3/-8/-12, and F3, and promoted leukocyte survival. C5a activity was C5aR dependent, as demonstrated by reversal with the C5aR inhibitor avacopan. Collectively, these results suggest that myeloid C5aR may induce excessive inflammation in the kidney via immune cell recruitment, extracellular matrix destruction, and remodeling, resulting in fibrotic tissue deposition.</p>","PeriodicalId":15966,"journal":{"name":"Journal of Histotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Histotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/01478885.2024.2430041","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The anaphylatoxin C5a and its receptor C5aR (CD88) are complement pathway effectors implicated in renal diseases, including ANCA-associated vasculitis. We investigated the kidney expression of C5aR and a second C5a receptor C5L2 by using immunohistochemistry, in situ hybridization, and spatial gene expression on formalin-fixed, paraffin-embedded human and mouse kidney. C5aR was detected on interstitial macrophages and in multiple tubular regions, including distal and proximal; C5L2 had a similar expression pattern. The 5/6 nephrectomy model of chronic kidney injury exhibited increased C5aR expression by infiltrating cells within the fibrotic regions. C5aR expression was confirmed on human leukocytes and in vitro differentiated macrophages by flow cytometry, and treatment with C5a induced the expression of chemokines and remodeling factors by macrophages, including CCL-3/-4/-7, -20, MMP-1/-3/-8/-12, and F3, and promoted leukocyte survival. C5a activity was C5aR dependent, as demonstrated by reversal with the C5aR inhibitor avacopan. Collectively, these results suggest that myeloid C5aR may induce excessive inflammation in the kidney via immune cell recruitment, extracellular matrix destruction, and remodeling, resulting in fibrotic tissue deposition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾小管、巨噬细胞和纤维化中的 C5aR 表达。
肾脏疾病(包括 ANCA 相关性血管炎)与补体途径效应因子 C5a 及其受体 C5aR(CD88)有关。我们采用免疫组化、原位杂交和空间基因表达等方法,对福尔马林固定、石蜡包埋的人和小鼠肾脏中 C5aR 和第二种 C5a 受体 C5L2 的表达进行了研究。在间质巨噬细胞和多个肾小管区域(包括远端和近端)都检测到了 C5aR;C5L2 也有类似的表达模式。5/6肾切除术慢性肾损伤模型显示,纤维化区域内浸润细胞的C5aR表达增加。流式细胞术证实了人类白细胞和体外分化巨噬细胞中 C5aR 的表达,C5a 可诱导巨噬细胞表达趋化因子和重塑因子,包括 CCL-3/-4/-7、-20、MMP-1/-3/-8/-12 和 F3,并促进白细胞存活。C5a 活性依赖于 C5aR,C5aR 抑制剂 avacopan 可逆转 C5a 活性。总之,这些结果表明,骨髓 C5aR 可通过免疫细胞招募、细胞外基质破坏和重塑诱发肾脏过度炎症,导致纤维组织沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Histotechnology
Journal of Histotechnology 生物-细胞生物学
CiteScore
2.60
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The official journal of the National Society for Histotechnology, Journal of Histotechnology, aims to advance the understanding of complex biological systems and improve patient care by applying histotechniques to diagnose, prevent and treat diseases. Journal of Histotechnology is concerned with educating practitioners and researchers from diverse disciplines about the methods used to prepare tissues and cell types, from all species, for microscopic examination. This is especially relevant to Histotechnicians. Journal of Histotechnology welcomes research addressing new, improved, or traditional techniques for tissue and cell preparation. This includes review articles, original articles, technical notes, case studies, advances in technology, and letters to editors. Topics may include, but are not limited to, discussion of clinical, veterinary, and research histopathology.
期刊最新文献
Resolving the bone - optimizing decalcification in spatial transcriptomics and molecular pathology. Optimizing tissue adherence on glass slides using polyurethane glue: a new slide preparation method. Multiple levels of Gomori methenamine silver (GMS) stains do not improve diagnostic yield in esophageal biopsies. Novel processing and staining methodology of bottlenose dolphin (Tursiops truncatus) teeth for age determination. Optimizing immunofluorescent staining of H vessels within an irradiated fracture callus in paraffin-embedded tissue samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1