High-level sustainable production of complex phenylethanoid glycosides from glucose through engineered yeast cell factories.

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-11-25 DOI:10.1016/j.ymben.2024.11.012
Penggang Bai, Yihan Yang, Jun Tang, Daoyi Xi, Yongya Hao, Lili Jiang, Hua Yin, Tao Liu
{"title":"High-level sustainable production of complex phenylethanoid glycosides from glucose through engineered yeast cell factories.","authors":"Penggang Bai, Yihan Yang, Jun Tang, Daoyi Xi, Yongya Hao, Lili Jiang, Hua Yin, Tao Liu","doi":"10.1016/j.ymben.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><p>Complex phenylethanoid glycosides (PhGs), such as verbascoside and echinacoside, comprise a vital family of natural products with renowned nutraceutical and pharmaceutical significance. Despite the high demand for these compounds across various industries, traditional plant extraction methods yield insufficient quantities, highlighting the need for alternative production methods. Therefore, this paper reports the successful engineering of Saccharomyces cerevisiae cell factories for the efficient production of complex PhGs from glucose. First, key pathway enzymes with enhanced catalytic activities in yeast were primarily screened from various verbascoside-producing plants. Second, intermediate osmanthuside B was produced with a titer of 21.5 ± 1.5 mg/L from glucose by overexpressing several enzymes, including glucosyltransferase RrUGT33 from Rhdiola rosea, acyltransferase SiAT, and 1,3-rhamnosyltransferase SiRT from Sesamum indicum, UDP-L-rhamnose synthase AtRHM2, and 4-coumarate: coenzyme A ligase At4CL1 from Arabidopsis thaliana in a p-coumaric acid-overproducing S. cerevisiae strain. Third, the production of osmanthuside B was further enhanced by increasing the copy number of SiAT and AtRHM2 in genome and diverting L-tyrosine into tyrosol biosynthesis by introducing an aromatic aldehyde synthase PcAAS from Petroselinum crispum with a titer of 320.6 ± 59.3 mg/L. Fourth, the biosynthesis of verbascoside was accomplished by integrating genes CYP98A20 and AtCPR1 into the chromosomes of the osmanthuside B-producing strain, the titer reached 184.7 ± 5.7 mg/L. Furthermore, the overexpression of the glucose-6-phosphate dehydrogenase (ZWF1) led to significantly enhanced verbascoside production to 230.6 ± 11.8 mg/L. The strains were further engineered to produce echinacoside with a titer of 184.2 ± 11.2 mg/L. Finally, the fed-batch fermentation in a 5-L bioreactor yielded 4497.9 ± 285.2 mg/L of verbascoside or 3617.4 ± 117.4 mg/L of echinacoside. This work provides a crucial foundation for the green, industrial, and sustainable production of verbascoside and echinacoside and sets an initial point for the microbial production of other complex PhG derivatives.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.11.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Complex phenylethanoid glycosides (PhGs), such as verbascoside and echinacoside, comprise a vital family of natural products with renowned nutraceutical and pharmaceutical significance. Despite the high demand for these compounds across various industries, traditional plant extraction methods yield insufficient quantities, highlighting the need for alternative production methods. Therefore, this paper reports the successful engineering of Saccharomyces cerevisiae cell factories for the efficient production of complex PhGs from glucose. First, key pathway enzymes with enhanced catalytic activities in yeast were primarily screened from various verbascoside-producing plants. Second, intermediate osmanthuside B was produced with a titer of 21.5 ± 1.5 mg/L from glucose by overexpressing several enzymes, including glucosyltransferase RrUGT33 from Rhdiola rosea, acyltransferase SiAT, and 1,3-rhamnosyltransferase SiRT from Sesamum indicum, UDP-L-rhamnose synthase AtRHM2, and 4-coumarate: coenzyme A ligase At4CL1 from Arabidopsis thaliana in a p-coumaric acid-overproducing S. cerevisiae strain. Third, the production of osmanthuside B was further enhanced by increasing the copy number of SiAT and AtRHM2 in genome and diverting L-tyrosine into tyrosol biosynthesis by introducing an aromatic aldehyde synthase PcAAS from Petroselinum crispum with a titer of 320.6 ± 59.3 mg/L. Fourth, the biosynthesis of verbascoside was accomplished by integrating genes CYP98A20 and AtCPR1 into the chromosomes of the osmanthuside B-producing strain, the titer reached 184.7 ± 5.7 mg/L. Furthermore, the overexpression of the glucose-6-phosphate dehydrogenase (ZWF1) led to significantly enhanced verbascoside production to 230.6 ± 11.8 mg/L. The strains were further engineered to produce echinacoside with a titer of 184.2 ± 11.2 mg/L. Finally, the fed-batch fermentation in a 5-L bioreactor yielded 4497.9 ± 285.2 mg/L of verbascoside or 3617.4 ± 117.4 mg/L of echinacoside. This work provides a crucial foundation for the green, industrial, and sustainable production of verbascoside and echinacoside and sets an initial point for the microbial production of other complex PhG derivatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过工程酵母细胞工厂,从葡萄糖中可持续地生产高水平的复杂苯乙醇苷。
马鞭草苷和刺槐苷等复杂的苯乙醇苷(PhGs)是重要的天然产品系列,具有著名的营养保健和制药价值。尽管各行各业对这些化合物的需求量很大,但传统的植物提取方法产量不足,这凸显了对替代生产方法的需求。因此,本文报告了从葡萄糖中高效生产复杂 PhGs 的酿酒酵母细胞工厂的成功工程。首先,主要从多种马鞭草苷生产植物中筛选出在酵母中催化活性更强的关键途径酶。其次,酵母从葡萄糖中生产出中间体桂花苷 B,滴度为 21.5 ± 1.5毫克/升的葡萄糖中间体桂花苷B。第三,通过增加基因组中 SiAT 和 AtRHM2 的拷贝数,并通过引入来自脆皮草的芳香醛合成酶 PcAAS,将 L-酪氨酸转入酪醇的生物合成,进一步提高了桂花苷 B 的产量,滴度为 320.6 ± 59.3 mg/L。第四,将 CYP98A20 和 AtCPR1 基因整合到桂花苷 B 生产菌株的染色体中,实现了马鞭草苷的生物合成,滴度达到 184.7 ± 5.7 mg/L。此外,过表达葡萄糖-6-磷酸脱氢酶(ZWF1)可显著提高马鞭草苷的产量,达到 230.6 ± 11.8 mg/L。这些菌株经进一步改造后可生产出滴度为 184.2 ± 11.2 mg/L 的棘花苷。最后,在一个 5 升的生物反应器中进行饲料批量发酵,产生了 4497.9 ± 285.2 mg/L 的马鞭草苷或 3617.4 ± 117.4 mg/L 的棘果苷。这项工作为马鞭草苷和棘果苷的绿色、工业化和可持续生产奠定了重要基础,并为其他复杂 PhG 衍生物的微生物生产奠定了初步基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Elucidation and Engineering of Sphingolipid Biosynthesis Pathway in Yarrowia lipolytica for Enhanced Production of Human-type Sphingoid Bases and Glucosylceramides. High-level sustainable production of complex phenylethanoid glycosides from glucose through engineered yeast cell factories. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis Optimized Production of Concanamycins Using a Rational Metabolic Engineering Strategy. Flux balance analysis and peptide mapping elucidate the impact of bioreactor pH on Chinese hamster ovary (CHO) cell metabolism and N-linked glycosylation in the fab and Fc regions of the produced IgG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1