SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-11-27 DOI:10.1038/s41592-024-02516-y
Duanhua Cao, Mingan Chen, Runze Zhang, Zhaokun Wang, Manlin Huang, Jie Yu, Xinyu Jiang, Zhehuan Fan, Wei Zhang, Hao Zhou, Xutong Li, Zunyun Fu, Sulin Zhang, Mingyue Zheng
{"title":"SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction.","authors":"Duanhua Cao, Mingan Chen, Runze Zhang, Zhaokun Wang, Manlin Huang, Jie Yu, Xinyu Jiang, Zhehuan Fan, Wei Zhang, Hao Zhou, Xutong Li, Zunyun Fu, Sulin Zhang, Mingyue Zheng","doi":"10.1038/s41592-024-02516-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02516-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SurfDock 是一种表面信息扩散生成模型,用于可靠、准确地预测蛋白质配体复合物。
准确预测蛋白质配体之间的相互作用对于理解细胞过程至关重要。我们介绍的 SurfDock 是一种深度学习方法,它通过将蛋白质序列、三维结构图和表面特征整合到等变结构中来应对这一挑战。SurfDock 采用非欧几里得流形上的生成扩散模型,优化分子平移、旋转和扭转,生成可靠的结合位置。我们对各种基准进行的广泛评估表明,SurfDock 在对接成功率和遵守物理约束方面优于现有方法。它还对未见过的蛋白质和预测的apo结构表现出卓越的通用性,同时在虚拟筛选任务中达到了最先进的性能。在实际应用中,SurfDock 在针对醛脱氢酶 1B1 的虚拟筛选项目中发现了七个新的命中分子,醛脱氢酶 1B1 是细胞代谢中的一种关键酶。这展示了 SurfDock 在阐明细胞过程的分子机制方面的能力。这些结果凸显了 SurfDock 作为结构生物学变革性工具的潜力,它在理解蛋白质配体相互作用方面提供了更高的准确性、物理合理性和实际应用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Publisher Correction: Massively parallel single-cell sequencing of diverse microbial populations. Human CD8+ T cell map with single-cell transcriptome and TCR information. Integrative mapping of human CD8+ T cells in inflammation and cancer. A proteome-wide quantitative platform for nanoscale spatially resolved extraction of membrane proteins into native nanodiscs. Enhancing functional gene set analysis with large language models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1