Farzaneh Goli, Ali Aflakian, Mo Qu, Yue Zang, Mozafar Saadat, Duc Truong Pham, Yongjing Wang
{"title":"Characterizing the mechanics of rectangular peg-hole disassembly and the effect of the active compliance centre on the extraction force.","authors":"Farzaneh Goli, Ali Aflakian, Mo Qu, Yue Zang, Mozafar Saadat, Duc Truong Pham, Yongjing Wang","doi":"10.1098/rsos.240956","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aimed at facilitating robotized disassembly for remanufacturing by focusing on the challenge of rectangular peg-hole disassembly. The study explores all potential contact states during the rectangular peg-hole disassembly process and identifies 26 distinct conditions, 16 of which are related to jamming. The contact conditions are categorized into five groups based on the number of contacts with the surface. Thereafter, it provides an in-depth analysis of jamming phenomena during the extraction process, employing both geometrical and quasistatic analyses to establish boundary conditions for jamming. Furthermore, the efficacy of the active compliance centre position in preventing jamming area is explored, considering critical variables such as compliance degree, centre location and initial position errors. The outcomes highlight that positioning the compliance centre at the end of the peg is the most effective strategy for reducing the jamming area and extraction force. Finally, the simulated results are confirmed by experiments and demonstrated 77.1% reduction to the maximum extraction force with the correct active compliance centre position, as opposed to when it is placed at the top of the peg. The findings contribute insights into the intricate dynamics of disassembly, revealing potential avenues for optimizing automated robotic systems in remanufacturing.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 11","pages":"240956"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11597411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240956","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aimed at facilitating robotized disassembly for remanufacturing by focusing on the challenge of rectangular peg-hole disassembly. The study explores all potential contact states during the rectangular peg-hole disassembly process and identifies 26 distinct conditions, 16 of which are related to jamming. The contact conditions are categorized into five groups based on the number of contacts with the surface. Thereafter, it provides an in-depth analysis of jamming phenomena during the extraction process, employing both geometrical and quasistatic analyses to establish boundary conditions for jamming. Furthermore, the efficacy of the active compliance centre position in preventing jamming area is explored, considering critical variables such as compliance degree, centre location and initial position errors. The outcomes highlight that positioning the compliance centre at the end of the peg is the most effective strategy for reducing the jamming area and extraction force. Finally, the simulated results are confirmed by experiments and demonstrated 77.1% reduction to the maximum extraction force with the correct active compliance centre position, as opposed to when it is placed at the top of the peg. The findings contribute insights into the intricate dynamics of disassembly, revealing potential avenues for optimizing automated robotic systems in remanufacturing.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.