L Alejandro Giraldo, Peter Wilf, Michael P Donovan, Robert M Kooyman, Maria A Gandolfo
{"title":"Fossil insect-feeding traces indicate unrecognized evolutionary history and biodiversity on Australia's iconic Eucalyptus.","authors":"L Alejandro Giraldo, Peter Wilf, Michael P Donovan, Robert M Kooyman, Maria A Gandolfo","doi":"10.1111/nph.20316","DOIUrl":null,"url":null,"abstract":"<p><p>Fossilized plant-insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce. We studied the insect herbivore damage found on 284 Eucalyptus frenguelliana leaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest-associated Eucalyptus species from Australasia (> 10 000 herbarium sheets reviewed). In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing-and-sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens. The finding of all the fossil damage types on extant Eucalyptus specimens suggests long-standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long-term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list of Eucalyptus species and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20316","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Fossilized plant-insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce. We studied the insect herbivore damage found on 284 Eucalyptus frenguelliana leaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest-associated Eucalyptus species from Australasia (> 10 000 herbarium sheets reviewed). In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing-and-sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens. The finding of all the fossil damage types on extant Eucalyptus specimens suggests long-standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long-term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list of Eucalyptus species and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity.
期刊介绍:
New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.