Reconfigurable nanomaterials folded from multicomponent chains of DNA origami voxels

IF 26.1 1区 计算机科学 Q1 ROBOTICS Science Robotics Pub Date : 2024-11-27 DOI:10.1126/scirobotics.adp2309
Minh Tri Luu, Jonathan F. Berengut, Jiahe Li, Jing-Bing Chen, Jasleen Kaur Daljit Singh, Kanako Coffi Dit Glieze, Matthew Turner, Karuna Skipper, Sreelakshmi Meppat, Hannah Fowler, William Close, Jonathan P. K. Doye, Ali Abbas, Shelley F. J. Wickham
{"title":"Reconfigurable nanomaterials folded from multicomponent chains of DNA origami voxels","authors":"Minh Tri Luu,&nbsp;Jonathan F. Berengut,&nbsp;Jiahe Li,&nbsp;Jing-Bing Chen,&nbsp;Jasleen Kaur Daljit Singh,&nbsp;Kanako Coffi Dit Glieze,&nbsp;Matthew Turner,&nbsp;Karuna Skipper,&nbsp;Sreelakshmi Meppat,&nbsp;Hannah Fowler,&nbsp;William Close,&nbsp;Jonathan P. K. Doye,&nbsp;Ali Abbas,&nbsp;Shelley F. J. Wickham","doi":"10.1126/scirobotics.adp2309","DOIUrl":null,"url":null,"abstract":"<div >In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bioinspired self-assembly approaches, such as DNA origami, have been used to achieve complex three-dimensional (3D) nanostructures and devices. However, current synthetic systems are limited by low yields in hierarchical assembly and challenges in rapid and efficient reconfiguration between diverse structures. Here, we developed a modular system of DNA origami “voxels” with programmable 3D connections. We demonstrate multifunctional pools of up to 12 unique voxels that can assemble into many shapes, prototyping 50 structures. Programmable switching of local connections between flexible and rigid states achieved rapid and reversible reconfiguration of global structures in three dimensions. Multistep assembly pathways were then explored to increase the yield. Voxels were assembled via flexible chain intermediates into rigid structures, increasing yield up to 100-fold. We envision that foldable chains of DNA origami voxels can achieve increased complexity in reconfigurable nanomaterials, providing modular components for the assembly of nanorobotic systems with future applications in synthetic biology, assembly of inorganic materials, and nanomedicine.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 96","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adp2309","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In cells, proteins rapidly self-assemble into sophisticated nanomachines. Bioinspired self-assembly approaches, such as DNA origami, have been used to achieve complex three-dimensional (3D) nanostructures and devices. However, current synthetic systems are limited by low yields in hierarchical assembly and challenges in rapid and efficient reconfiguration between diverse structures. Here, we developed a modular system of DNA origami “voxels” with programmable 3D connections. We demonstrate multifunctional pools of up to 12 unique voxels that can assemble into many shapes, prototyping 50 structures. Programmable switching of local connections between flexible and rigid states achieved rapid and reversible reconfiguration of global structures in three dimensions. Multistep assembly pathways were then explored to increase the yield. Voxels were assembled via flexible chain intermediates into rigid structures, increasing yield up to 100-fold. We envision that foldable chains of DNA origami voxels can achieve increased complexity in reconfigurable nanomaterials, providing modular components for the assembly of nanorobotic systems with future applications in synthetic biology, assembly of inorganic materials, and nanomedicine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由 DNA 折纸体块的多组分链折叠而成的可重构纳米材料。
在细胞中,蛋白质可快速自组装成精密的纳米机器。受生物启发的自组装方法(如 DNA 折纸)已被用于实现复杂的三维(3D)纳米结构和器件。然而,目前的合成系统受限于分层组装的低产量,以及在不同结构之间快速高效地重新配置所面临的挑战。在这里,我们开发了一种具有可编程三维连接的 DNA 折纸 "体块 "模块化系统。我们展示了由多达 12 个独特体块组成的多功能池,这些体块可以组装成多种形状,原型结构多达 50 种。局部连接在柔性和刚性状态之间的可编程切换实现了三维全局结构的快速可逆重组。然后探索了多步骤组装途径,以提高产量。体素通过柔性链中间体组装成刚性结构,产量提高了 100 倍。我们设想,DNA 折纸体块的可折叠链可以增加可重构纳米材料的复杂性,为纳米机器人系统的组装提供模块化组件,未来可应用于合成生物学、无机材料组装和纳米医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Robotics
Science Robotics Mathematics-Control and Optimization
CiteScore
30.60
自引率
2.80%
发文量
83
期刊介绍: Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals. Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.
期刊最新文献
A democratized bimodal model of research for soft robotics: Integrating slow and fast science Highly agile flat swimming robot Head-mounted surgical robots are an enabling technology for subretinal injections Restoration of tactile sensation in bionic hands It is hard to be a robot in the wild
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1