Precise manipulation of pore sizes in Zr(IV)-Based metal-organic frameworks for enhanced bisphenol a removal from water

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2024-12-01 DOI:10.1016/j.chemosphere.2024.143816
Guangli Yu , Fei Ni , Wenyue Niu , Yu Chen , Feng Zhang , Guo-Dong Li , Xingfei Song , Yajing Zhang , Kangjun Wang
{"title":"Precise manipulation of pore sizes in Zr(IV)-Based metal-organic frameworks for enhanced bisphenol a removal from water","authors":"Guangli Yu ,&nbsp;Fei Ni ,&nbsp;Wenyue Niu ,&nbsp;Yu Chen ,&nbsp;Feng Zhang ,&nbsp;Guo-Dong Li ,&nbsp;Xingfei Song ,&nbsp;Yajing Zhang ,&nbsp;Kangjun Wang","doi":"10.1016/j.chemosphere.2024.143816","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) recently gained immense popularity for the adsorption of organic impurities. In this work, the adsorptive separation of bisphenol A (BPA) from aqueous mixtures was explored utilizing three types of zirconium-based MOFs, namely MOF-808, UiO-66, and hierarchically porous UiO-66 (HP-UiO-66). The HP-UiO-66, which was etched by sodium acetate as the terminal ligand, generated large mesopores ranging from 40 to 300 Å due to the departure of partial linkers and metallic clusters. The adsorption ability for BPA increased significantly with the introduction of numerous mesopores onto the HP-UiO-66 framework, even though the surface area of HP-UiO-66 was lower compared to that of the pristine UiO-66 and MOF-808. The study revealed that the maximum adsorption capacities (<em>q</em>) for BPA by HP-UiO-66 reached up to 295.04 mg g<sup>−1</sup>, which was about 88.5% and 17.4% higher in comparison to UiO-66 and MOF-808, respectively. Furthermore, the <em>q</em> value of HP-UiO-66 was also better than many other previously reported MOF adsorbents. The analysis of possible adsorption mechanisms indicated that physical pore-filling was anticipated as the principal mechanism, attributed to the larger window size and high mesopore surface area of HP-UiO-66. Furthermore, X-ray photoelectron and Fourier transform infrared spectroscopic measurements inferred that the synergetic effects of H-bonding and π-π interactions played crucial roles in BPA capture as well. Overall, this study revealed a structure–property relationship in the Zr-MOFs-based adsorbents and opened up a new avenue to exploit unique MOF platforms for the efficient removal of emerging contaminations in the future.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"369 ","pages":"Article 143816"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524027176","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) recently gained immense popularity for the adsorption of organic impurities. In this work, the adsorptive separation of bisphenol A (BPA) from aqueous mixtures was explored utilizing three types of zirconium-based MOFs, namely MOF-808, UiO-66, and hierarchically porous UiO-66 (HP-UiO-66). The HP-UiO-66, which was etched by sodium acetate as the terminal ligand, generated large mesopores ranging from 40 to 300 Å due to the departure of partial linkers and metallic clusters. The adsorption ability for BPA increased significantly with the introduction of numerous mesopores onto the HP-UiO-66 framework, even though the surface area of HP-UiO-66 was lower compared to that of the pristine UiO-66 and MOF-808. The study revealed that the maximum adsorption capacities (q) for BPA by HP-UiO-66 reached up to 295.04 mg g−1, which was about 88.5% and 17.4% higher in comparison to UiO-66 and MOF-808, respectively. Furthermore, the q value of HP-UiO-66 was also better than many other previously reported MOF adsorbents. The analysis of possible adsorption mechanisms indicated that physical pore-filling was anticipated as the principal mechanism, attributed to the larger window size and high mesopore surface area of HP-UiO-66. Furthermore, X-ray photoelectron and Fourier transform infrared spectroscopic measurements inferred that the synergetic effects of H-bonding and π-π interactions played crucial roles in BPA capture as well. Overall, this study revealed a structure–property relationship in the Zr-MOFs-based adsorbents and opened up a new avenue to exploit unique MOF platforms for the efficient removal of emerging contaminations in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精确控制基于 Zr(IV)-Based Metal-Organic Frameworks 的孔隙大小,提高从水中去除双酚 A 的能力。
最近,金属有机框架(MOFs)在吸附有机杂质方面大受欢迎。本研究利用三种锆基 MOF,即 MOF-808、UiO-66 和分层多孔 UiO-66(HP-UiO-66),探索了从水性混合物中吸附分离双酚 A(BPA)的方法。以醋酸钠为末端配体蚀刻的 HP-UiO-66 由于部分连接体和金属团簇的离开,产生了 40 至 300 Å 的大介孔。尽管 HP-UiO-66 的比表面积低于原始 UiO-66 和 MOF-808,但随着 HP-UiO-66 框架上引入大量介孔,其对双酚 A 的吸附能力显著提高。研究表明,HP-UiO-66 对双酚 A 的最大吸附容量(q)达到 295.04 mg g-1,比 UiO-66 和 MOF-808 分别高出约 88.5% 和 17.4%。此外,HP-UiO-66 的 q 值也优于之前报道的许多其他 MOF 吸附剂。对可能的吸附机理的分析表明,由于 HP-UiO-66 具有较大的窗口尺寸和较高的中孔表面积,因此物理孔填充被认为是主要的吸附机理。此外,X 射线光电子学和傅立叶变换红外光谱测量推断,H 键和π-π 相互作用的协同效应在捕获双酚 A 的过程中也发挥了关键作用。总之,这项研究揭示了基于 Zr-MOFs 的吸附剂的结构-性能关系,为今后利用独特的 MOF 平台高效去除新兴污染物开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Characterization of potentially toxic elements in leachates from active and closed landfills in Nigeria and their effects on groundwater systems using spatial, indexical, chemometric and health risk techniques Toxic effects of acute and chronic atorvastatin exposure on antioxidant systems, autophagy processes, energy metabolism and life history in Daphnia magna Molecular composition and formation mechanism of chlorinated organic compounds in biological waste leachate treated by electrochemical oxidation with a boron-doped diamond anode Antibiotics residues in inland and transitional sediments Exploring perfluoroalkyl substances contamination in human breast milk: First ghanaian study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1