Towards Linking Histological Changes to Liver Viscoelasticity: A Hybrid Analytical-Computational Micromechanics Approach.

ArXiv Pub Date : 2024-11-29
Haritya Shah, Murthy N Guddati
{"title":"Towards Linking Histological Changes to Liver Viscoelasticity: A Hybrid Analytical-Computational Micromechanics Approach.","authors":"Haritya Shah, Murthy N Guddati","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e., predict the bulk material properties by analyzing the deformation of repeating unit cell. The lipid and collagen deposition is simulated with the help of ad hoc algorithms informed by histological observations. Collagen deposition is directly included in the computational model, while composite material theory is used to convert fat content to the microscopic mechanical properties, which in turn is included in the computational model. The results illustrate the model's ability to capture the effect of both fat and collagen deposition on the viscoelastic moduli and represents a step towards linking histopathological changes in the liver to its bulk mechanical properties, which can eventually provide insights for accurate diagnosis with elastography.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601793/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by elastography that utilizes tissue mechanical properties as biomarkers for liver disease, with the eventual objective of quantitatively linking histopathology and bulk mechanical properties, we develop a micromechanical modeling approach to capture the effects of fat and collagen deposition in the liver. Specifically, we utilize computational homogenization to convert the microstructural changes in hepatic lobule to the effective viscoelastic modulus of the liver tissue, i.e., predict the bulk material properties by analyzing the deformation of repeating unit cell. The lipid and collagen deposition is simulated with the help of ad hoc algorithms informed by histological observations. Collagen deposition is directly included in the computational model, while composite material theory is used to convert fat content to the microscopic mechanical properties, which in turn is included in the computational model. The results illustrate the model's ability to capture the effect of both fat and collagen deposition on the viscoelastic moduli and represents a step towards linking histopathological changes in the liver to its bulk mechanical properties, which can eventually provide insights for accurate diagnosis with elastography.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将组织学变化与肝脏粘弹性联系起来:分析-计算微观力学混合方法。
弹性成像利用组织机械特性作为肝脏疾病的生物标记,其最终目标是在组织学和大体机械特性之间建立明确的联系,受此激励,我们开发了一种微观机械建模方法来捕捉肝脏中脂肪和胶原沉积的影响。具体来说,我们利用计算均质化将肝小叶的微观结构变化转换为肝组织的有效粘弹模量,即通过分析重复单元格的变形来预测大体材料特性。脂质和胶原蛋白的沉积是在组织学观察结果的帮助下,通过特别算法模拟出来的。胶原蛋白沉积直接包含在计算模型中,而复合材料理论则用于将脂肪含量转换为微观机械性能。结果表明,该模型能够捕捉脂肪和胶原沉积对粘弹性模量的影响,在将肝脏的组织学变化与肝脏的大体机械特性联系起来方面迈出了一步,为使用弹性成像技术进行精确诊断提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metastability in networks of nonlinear stochastic integrate-and-fire neurons. On the linear scaling of entropy vs. energy in human brain activity, the Hagedorn temperature and the Zipf law. Timing consistency of T cell receptor activation in a stochastic model combining kinetic segregation and proofreading. Brain Morphology Normative modelling platform for abnormality and Centile estimation: Brain MoNoCle. Adversarial Attacks on Large Language Models in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1