Ernest Akyereko, Frank B Osei, Kofi M Nyarko, Alfred Stein
{"title":"Flexible scan statistic with a restricted likelihood ratio for optimized COVID-19 surveillance.","authors":"Ernest Akyereko, Frank B Osei, Kofi M Nyarko, Alfred Stein","doi":"10.4081/gh.2024.1265","DOIUrl":null,"url":null,"abstract":"<p><p>Disease surveillance remains important for early detection of new COVID-19 variants. For this purpose, the World Health Organization (WHO) recommends integrating of COVID-19 surveillance with other respiratory diseases. This requires knowledge of areas with elevated risk, which in developing countries is lacking from the routine analyses. Focusing on Ghana, this study employed scan-statistic cluster analysis to uncover the spatial patterns of incidence and Case Fatality Rates (CFR) of COVID-19 based on reports covering the four pandemic waves in Ghana between 12 March 2020 and 28 February 2022. Applying flexible spatial scan statistic with restricted likelihood ratio, we examined the incidence and CFR clusters before and after adjustment for covariates. We used distance to the epicentre, proportion of the population aged ≥ 65, male proportion of the population and urban proportion of the population as the covariates. We identified 56 significant spatial clusters for incidence and 26 for CFR for all four waves of the pandemic. The Most Likely Clusters (MLCs) of incidence occurred in the districts in south-eastern Ghana, while the CFR ones occurred in districts in the central and the northeastern parts of the country. These districts could serve as sites for sentinel or genomic surveillance. Spatial relationships were identified between COVID-19 incidence covariates and the CFR. We observed closeness to the epicentre and high proportions of urban populations increased COVID-19 incidence, whiles high proportions of those aged ≥ 65 years increased the CFR. Accounting for the covariates resulted in changes in the distribution of the clusters. Both incidence and CFR due to COVID-19 were spatially clustered, and these clusters were affected by high proportions of the urban population, high proportions of the male population, high proportions of the population aged ≥ 65 years and closeness to the epicentre. Surveillance should target districts with elevated risk. Long-term control measures for COVID-19 and other contagious diseases should consider improving quality healthcare access and measures to reduce growth rates of urban populations.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"19 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2024.1265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Disease surveillance remains important for early detection of new COVID-19 variants. For this purpose, the World Health Organization (WHO) recommends integrating of COVID-19 surveillance with other respiratory diseases. This requires knowledge of areas with elevated risk, which in developing countries is lacking from the routine analyses. Focusing on Ghana, this study employed scan-statistic cluster analysis to uncover the spatial patterns of incidence and Case Fatality Rates (CFR) of COVID-19 based on reports covering the four pandemic waves in Ghana between 12 March 2020 and 28 February 2022. Applying flexible spatial scan statistic with restricted likelihood ratio, we examined the incidence and CFR clusters before and after adjustment for covariates. We used distance to the epicentre, proportion of the population aged ≥ 65, male proportion of the population and urban proportion of the population as the covariates. We identified 56 significant spatial clusters for incidence and 26 for CFR for all four waves of the pandemic. The Most Likely Clusters (MLCs) of incidence occurred in the districts in south-eastern Ghana, while the CFR ones occurred in districts in the central and the northeastern parts of the country. These districts could serve as sites for sentinel or genomic surveillance. Spatial relationships were identified between COVID-19 incidence covariates and the CFR. We observed closeness to the epicentre and high proportions of urban populations increased COVID-19 incidence, whiles high proportions of those aged ≥ 65 years increased the CFR. Accounting for the covariates resulted in changes in the distribution of the clusters. Both incidence and CFR due to COVID-19 were spatially clustered, and these clusters were affected by high proportions of the urban population, high proportions of the male population, high proportions of the population aged ≥ 65 years and closeness to the epicentre. Surveillance should target districts with elevated risk. Long-term control measures for COVID-19 and other contagious diseases should consider improving quality healthcare access and measures to reduce growth rates of urban populations.
期刊介绍:
The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.