Cell migration simulator-based biomarkers for glioblastoma.

IF 3.7 Q1 CLINICAL NEUROLOGY Neuro-oncology advances Pub Date : 2024-11-02 eCollection Date: 2024-01-01 DOI:10.1093/noajnl/vdae184
Jay Hou, Mariah McMahon, Tyler Jubenville, Jann N Sarkaria, Clark C Chen, David J Odde
{"title":"Cell migration simulator-based biomarkers for glioblastoma.","authors":"Jay Hou, Mariah McMahon, Tyler Jubenville, Jann N Sarkaria, Clark C Chen, David J Odde","doi":"10.1093/noajnl/vdae184","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma is the most aggressive malignant brain tumor with poor survival due to its invasive nature driven by cell migration, with unclear linkage to transcriptomic information. The aim of this study was to develop a physics-based framework connecting to transcriptomics to predict patient-specific glioblastoma cell migration.</p><p><strong>Methods and results: </strong>We applied a physics-based motor-clutch model, a cell migration simulator (CMS), to parameterize the migration of glioblastoma cells and define physical biomarkers on a patient-by-patient basis. We reduced the 11-dimensional parameter space of the CMS into 3 principal physical parameters that govern cell migration: motor number-describing myosin II activity, clutch number-describing adhesion level, and F-actin polymerization rate. Experimentally, we found that glioblastoma patient-derived (xenograft) cell lines across mesenchymal (MES), proneural, and classical subtypes and 2 institutions (<i>N</i> = 13 patients) had optimal motility and traction force on stiffnesses around 9.3 kPa, with otherwise heterogeneous and uncorrelated motility, traction, and F-actin flow. By contrast, with the CMS parameterization, we found that glioblastoma cells consistently had balanced motor/clutch ratios to enable effective migration and that MES cells had higher actin polymerization rates resulting in higher motility. The CMS also predicted differential sensitivity to cytoskeletal drugs between patients. Finally, we identified 18 genes that correlated with the physical parameters, suggesting transcriptomic data alone could potentially predict the mechanics and speed of glioblastoma cell migration.</p><p><strong>Conclusions: </strong>We describe a general physics-based framework for parameterizing individual glioblastoma patients and connecting to clinical transcriptomic data that can potentially be used to develop patient-specific anti-migratory therapeutic strategies.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"6 1","pages":"vdae184"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma is the most aggressive malignant brain tumor with poor survival due to its invasive nature driven by cell migration, with unclear linkage to transcriptomic information. The aim of this study was to develop a physics-based framework connecting to transcriptomics to predict patient-specific glioblastoma cell migration.

Methods and results: We applied a physics-based motor-clutch model, a cell migration simulator (CMS), to parameterize the migration of glioblastoma cells and define physical biomarkers on a patient-by-patient basis. We reduced the 11-dimensional parameter space of the CMS into 3 principal physical parameters that govern cell migration: motor number-describing myosin II activity, clutch number-describing adhesion level, and F-actin polymerization rate. Experimentally, we found that glioblastoma patient-derived (xenograft) cell lines across mesenchymal (MES), proneural, and classical subtypes and 2 institutions (N = 13 patients) had optimal motility and traction force on stiffnesses around 9.3 kPa, with otherwise heterogeneous and uncorrelated motility, traction, and F-actin flow. By contrast, with the CMS parameterization, we found that glioblastoma cells consistently had balanced motor/clutch ratios to enable effective migration and that MES cells had higher actin polymerization rates resulting in higher motility. The CMS also predicted differential sensitivity to cytoskeletal drugs between patients. Finally, we identified 18 genes that correlated with the physical parameters, suggesting transcriptomic data alone could potentially predict the mechanics and speed of glioblastoma cell migration.

Conclusions: We describe a general physics-based framework for parameterizing individual glioblastoma patients and connecting to clinical transcriptomic data that can potentially be used to develop patient-specific anti-migratory therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细胞迁移模拟器的胶质母细胞瘤生物标记物。
背景:胶质母细胞瘤是侵袭性最强的恶性脑肿瘤,由于其侵袭性由细胞迁移驱动,因此生存率很低,但与转录组信息的联系并不明确。本研究旨在开发一个基于物理学的框架,与转录组学相连接,以预测特定患者的胶质母细胞瘤细胞迁移:我们应用了一种基于物理学的马达离合器模型--细胞迁移模拟器(CMS)--来确定胶质母细胞瘤细胞迁移的参数,并根据患者的具体情况确定物理生物标志物。我们将 CMS 的 11 维参数空间缩减为 3 个支配细胞迁移的主要物理参数:描述肌球蛋白 II 活性的电机数、描述粘附水平的离合器数和 F-肌动蛋白聚合率。通过实验,我们发现胶质母细胞瘤患者衍生(异种移植)细胞系在间质(MES)、绒毛膜、经典亚型和 2 个机构(N = 13 名患者)的硬度为 9.3 kPa 左右时,具有最佳的运动性和牵引力,而在其他情况下,运动性、牵引力和 F-肌动蛋白流则是不均匀和不相关的。相比之下,通过CMS参数化,我们发现胶质母细胞瘤细胞始终具有平衡的马达/离合器比率,从而实现有效迁移,而且MES细胞具有更高的肌动蛋白聚合率,从而具有更高的运动能力。CMS还预测了不同患者对细胞骨架药物的不同敏感性。最后,我们确定了 18 个与物理参数相关的基因,这表明仅凭转录组数据就有可能预测胶质母细胞瘤细胞迁移的机制和速度:我们描述了一种基于物理学的通用框架,该框架可为单个胶质母细胞瘤患者提供参数,并与临床转录组数据相连接,从而有可能用于开发针对患者的抗迁移治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Erratum to: Evolutionary evidence precludes ELP1 as a high-penetrance pediatric cancer predisposition syndrome gene. A comparative study of preclinical and clinical molecular imaging response to EGFR inhibition using osimertinib in glioblastoma. Size matters: Early progression of melanoma brain metastases after treatment with immune checkpoint inhibitors. Distant brain failure after stereotactic radiosurgery for brain metastases in patients receiving novel systemic treatments. Longitudinal profiling of IDH-mutant astrocytomas reveals acquired RAS-MAPK pathway mutations associated with inferior survival.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1