KaMLs for Predicting Protein pKa Values and Ionization States: Are Trees All You Need?

Mingzhe Shen, Daniel Kortzak, Simon Ambrozak, Shubham Bhatnagar, Ian Buchanan, Ruibin Liu, Jana Shen
{"title":"KaMLs for Predicting Protein pKa Values and Ionization States: Are Trees All You Need?","authors":"Mingzhe Shen, Daniel Kortzak, Simon Ambrozak, Shubham Bhatnagar, Ian Buchanan, Ruibin Liu, Jana Shen","doi":"10.1101/2024.11.09.622800","DOIUrl":null,"url":null,"abstract":"<p><p>Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physicsbased approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by scarcity of experimental data. Here we report the development of pKa ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment pKa database (PKAD-3) enriched with highly shifted pKa's. KaML-CBtree significantly outperforms the current state of the art in predicting pKa values and ionization states across all six titratable amino acids, notably achieving accurate predictions for deprotonated cysteines and lysines - a blind spot in previous models. The superior performance of KaMLs is achieved in part through several innovations, including separate treatment of acid and base, data augmentation using AlphaFold structures, and model pretraining on a theoretical pKa database. We also introduce the classification of protonation states as a metric for evaluating pKa prediction models. A meta-feature analysis suggests a possible reason for the lightweight tree model to outperform the more complex deep learning GAT. We release an end-to-end pKa predictor based on KaML-CBtree and the new PKAD-3 database, which facilitates a variety of applications and provides the foundation for further advances in protein electrostatics research.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.09.622800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite its importance in understanding biology and computer-aided drug discovery, the accurate prediction of protein ionization states remains a formidable challenge. Physicsbased approaches struggle to capture the small, competing contributions in the complex protein environment, while machine learning (ML) is hampered by scarcity of experimental data. Here we report the development of pKa ML (KaML) models based on decision trees and graph attention networks (GAT), exploiting physicochemical understanding and a new experiment pKa database (PKAD-3) enriched with highly shifted pKa's. KaML-CBtree significantly outperforms the current state of the art in predicting pKa values and ionization states across all six titratable amino acids, notably achieving accurate predictions for deprotonated cysteines and lysines - a blind spot in previous models. The superior performance of KaMLs is achieved in part through several innovations, including separate treatment of acid and base, data augmentation using AlphaFold structures, and model pretraining on a theoretical pKa database. We also introduce the classification of protonation states as a metric for evaluating pKa prediction models. A meta-feature analysis suggests a possible reason for the lightweight tree model to outperform the more complex deep learning GAT. We release an end-to-end pKa predictor based on KaML-CBtree and the new PKAD-3 database, which facilitates a variety of applications and provides the foundation for further advances in protein electrostatics research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测蛋白质 p K a 值和电离状态的 KaML:树是您所需要的吗?
尽管蛋白质电离状态与理解生物学和计算机辅助药物发现息息相关,但准确预测蛋白质电离状态仍然是一项艰巨的挑战。基于物理学的方法难以捕捉复杂蛋白质环境中微小的、相互竞争的贡献,而机器学习(ML)则受到实验数据稀缺的阻碍。在这里,我们开发了基于决策树和图注意网络(GAT)的 p K a ML(KaML)模型,利用了物理化学特征和一个富含高度偏移 p K a 的新实验 p K a 数据库(PKAD-3)。在预测所有六种可滴定氨基酸的 p K a 值和电离状态方面,KaML-CBtree 明显优于目前的技术水平,尤其是准确预测了去质子化半胱氨酸和赖氨酸--这是以前模型的盲点。KaMLs 的卓越性能部分是通过几项创新实现的,包括对酸和碱的单独处理、利用 p K a 值变化作为训练目标、使用 AlphaFold 结构进行数据扩增以及在理论 p K a 数据库上进行模型预训练。元特征分析揭示了轻量级树模型优于更复杂的深度学习 GAT 的原因。我们发布了基于 KaML-CBtree 和新数据库 PKD-3 的端到端 p K a 预测器,为蛋白质静电研究的进一步发展提供了应用基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
I/σI vs {Rmerg, Rmeas, Rpim, CC1/2} for Crystal Diffraction Data Quality Evaluation. Systems biology-enabled targeting of NF-κΒ and BCL2 overcomes microenvironment-mediated BH3-mimetic resistance in DLBCL. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. CATSPERϵ extracellular domains are essential for sperm calcium channel assembly and activity modulation. Proteomic profiling of zinc homeostasis mechanisms in Pseudomonas aeruginosa through data-dependent and data-independent acquisition mass spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1