Tia R. Scarpelli, Daniel H. Cusworth, Riley M. Duren, Jinsol Kim, Joseph Heckler, Gregory P. Asner, Eben Thoma, Max J. Krause, Daniel Heins, Susan Thorneloe
{"title":"Investigating Major Sources of Methane Emissions at US Landfills","authors":"Tia R. Scarpelli, Daniel H. Cusworth, Riley M. Duren, Jinsol Kim, Joseph Heckler, Gregory P. Asner, Eben Thoma, Max J. Krause, Daniel Heins, Susan Thorneloe","doi":"10.1021/acs.est.4c07572","DOIUrl":null,"url":null,"abstract":"Airborne remote sensing observations were collected at 217 landfills across 17 states in the US in 2023. We used these observations to attribute emissions to major sources, including the landfill work face, where new waste is placed at the landfill and gas-control infrastructure. Methane emissions from the work face appeared to be more prevalent than gas-control infrastructure emissions, with 52 landfills exhibiting work face emissions out of the 115 observed landfills shown to be emitting in 2023. Landfills with work face emissions were often the highest emitters, especially sites with associated renewable natural gas facilities, and the total average site emissions from these landfills accounted for 79% of the observed emissions, indicating inefficient gas capture at these sites. Landfills with work face emissions also displayed the greatest disparity between observed emission rates and hourly emission rates that we estimated using annual emissions reported to the US EPA’s Greenhouse Gas Reporting Program. Work face emissions present a major opportunity for methane mitigation: Observed emissions from work face emitting-landfills in this study were equivalent to 15% of US methane emissions from municipal solid waste landfills in 2022, as reported in the 2024 Greenhouse Gas Inventory, though these landfills accounted for only 4% of open sites in the US. As the 217 landfills in this study cover only 17% of open landfills in the US, the total mitigation potential is likely greater. Using remote sensing, we find that the largest contributor to observed methane emissions at US landfills is the landfill work face, an area of the landfill often left out of the required monitoring and traditional emissions accounting methods.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"81 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07572","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Airborne remote sensing observations were collected at 217 landfills across 17 states in the US in 2023. We used these observations to attribute emissions to major sources, including the landfill work face, where new waste is placed at the landfill and gas-control infrastructure. Methane emissions from the work face appeared to be more prevalent than gas-control infrastructure emissions, with 52 landfills exhibiting work face emissions out of the 115 observed landfills shown to be emitting in 2023. Landfills with work face emissions were often the highest emitters, especially sites with associated renewable natural gas facilities, and the total average site emissions from these landfills accounted for 79% of the observed emissions, indicating inefficient gas capture at these sites. Landfills with work face emissions also displayed the greatest disparity between observed emission rates and hourly emission rates that we estimated using annual emissions reported to the US EPA’s Greenhouse Gas Reporting Program. Work face emissions present a major opportunity for methane mitigation: Observed emissions from work face emitting-landfills in this study were equivalent to 15% of US methane emissions from municipal solid waste landfills in 2022, as reported in the 2024 Greenhouse Gas Inventory, though these landfills accounted for only 4% of open sites in the US. As the 217 landfills in this study cover only 17% of open landfills in the US, the total mitigation potential is likely greater. Using remote sensing, we find that the largest contributor to observed methane emissions at US landfills is the landfill work face, an area of the landfill often left out of the required monitoring and traditional emissions accounting methods.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.