Ultradense Electrochemical Chip and Machine Learning for High-Throughput, Accurate Anticancer Drug Screening

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL ACS Sensors Pub Date : 2024-11-29 DOI:10.1021/acssensors.4c02298
Daniel S. Doretto, Paula C. R. Corsato, Christian O. Silva, James C. Pessoa, Luis C. S. Vieira, William R. de Araújo, Flávio M. Shimizu, Maria H. O. Piazzetta, Angelo L. Gobbi, Iris R. S. Ribeiro, Renato S. Lima
{"title":"Ultradense Electrochemical Chip and Machine Learning for High-Throughput, Accurate Anticancer Drug Screening","authors":"Daniel S. Doretto, Paula C. R. Corsato, Christian O. Silva, James C. Pessoa, Luis C. S. Vieira, William R. de Araújo, Flávio M. Shimizu, Maria H. O. Piazzetta, Angelo L. Gobbi, Iris R. S. Ribeiro, Renato S. Lima","doi":"10.1021/acssensors.4c02298","DOIUrl":null,"url":null,"abstract":"Despite the potentialities of electrochemical sensors, these devices still encounter challenges in devising high-throughput and accurate drug susceptibility testing. The lack of platforms for providing these analyses over the preclinical trials of drug candidates remains a significant barrier to developing medicines. In this way, ultradense electrochemical chips are combined with machine learning (ML) to enable high-throughput, user-friendly, and accurate determination of the viability of 2D tumor cells (breast and colorectal) aiming at drug susceptibility assays. The effect of doxorubicin (anticancer drug model) was assessed through cell detachment electrochemical assays by interrogating Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+</sup> with square wave voltammetry (SWV). This positive probe is presumed to imply sensitive monitoring of the on-sensor cellular death because of its electrostatic preconcentration in the so-called nanogap zone between the electrode surface and adherent cells. High-throughput assays were obtained by merging fast individual SWV measurements (9 s) with the ability of chips to yield analyses of Ru(NH<sub>3</sub>)<sub>6</sub><sup>3+</sup> in series. The approach’s applicability was demonstrated across two analysis formats, drop-casting and microfluidic assays. One should also mention that fitting a multivariate descriptor from selected input data via ML proved to be essential to providing accurate determinations (98 to 104%) of cell viability and half-maximal lethal concentration of the drug. The achieved results underscore the potential of the method in steering electrochemical sensors toward enabling high-throughput drug screening in practical applications.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"259 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02298","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the potentialities of electrochemical sensors, these devices still encounter challenges in devising high-throughput and accurate drug susceptibility testing. The lack of platforms for providing these analyses over the preclinical trials of drug candidates remains a significant barrier to developing medicines. In this way, ultradense electrochemical chips are combined with machine learning (ML) to enable high-throughput, user-friendly, and accurate determination of the viability of 2D tumor cells (breast and colorectal) aiming at drug susceptibility assays. The effect of doxorubicin (anticancer drug model) was assessed through cell detachment electrochemical assays by interrogating Ru(NH3)63+ with square wave voltammetry (SWV). This positive probe is presumed to imply sensitive monitoring of the on-sensor cellular death because of its electrostatic preconcentration in the so-called nanogap zone between the electrode surface and adherent cells. High-throughput assays were obtained by merging fast individual SWV measurements (9 s) with the ability of chips to yield analyses of Ru(NH3)63+ in series. The approach’s applicability was demonstrated across two analysis formats, drop-casting and microfluidic assays. One should also mention that fitting a multivariate descriptor from selected input data via ML proved to be essential to providing accurate determinations (98 to 104%) of cell viability and half-maximal lethal concentration of the drug. The achieved results underscore the potential of the method in steering electrochemical sensors toward enabling high-throughput drug screening in practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
期刊最新文献
Ultradense Electrochemical Chip and Machine Learning for High-Throughput, Accurate Anticancer Drug Screening Janus Wettable Mask with Integrated Ratiometric Fluorescent Probe for Comfortable Exhaled H2S Gas Sensing Multifunctional Optical Sensor for the Comprehensive Detection of Zinc Ions in Cardiovascular Disease Biogel Library-Accelerated Discovery of All-Natural Bioelectronics. Metal–Organic Frameworks (MOFs)-Based Piezoelectric-Colorimetric Hybrid Sensor for Monitoring Green Leaf Volatiles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1