Unraveling the atomic-scale pathways driving pressure-induced phase transitions in silicon

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2024-11-26 DOI:10.1016/j.mtnano.2024.100548
Fabrizio Rovaris, Anna Marzegalli, Francesco Montalenti, Emilio Scalise
{"title":"Unraveling the atomic-scale pathways driving pressure-induced phase transitions in silicon","authors":"Fabrizio Rovaris,&nbsp;Anna Marzegalli,&nbsp;Francesco Montalenti,&nbsp;Emilio Scalise","doi":"10.1016/j.mtnano.2024.100548","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon exhibits several metastable allotropes which recently attracted attention in the quest for materials with superior (e.g. optical) properties, compatible with Si technology. In this work we shed light on the atomic-scale mechanisms leading to phase transformations in Si under pressure. To do so, we synergically exploit different state-of-the-art approaches. In particular, we use the advanced GAP interatomic potential both in NPT molecular dynamics simulations and in solid-state nudged elastic band calculations, validating our predictions with ab initio DFT calculations.</div><div>We provide a link between evidence reported in experimental nanoindentation literature and simulation results. Particular attention is dedicated to the investigation of atomistic transition paths allowing for the transformation between BC8/R8 phases to the <em>hd</em> one under pure annealing. In this case we show a direct simulation of the local nucleation of the hexagonal phase in a BC8/R8 matrix and its corresponding atomic-scale mechanism extracted by the use of SS-NEB. We extend our study investigating the effect of pressure on the nucleation barrier, providing an argument for explaining the heterogeneous nucleation of the <em>hd</em> phase and unraveling its main parameters with possible applications to the design of nanostructured materials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100548"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon exhibits several metastable allotropes which recently attracted attention in the quest for materials with superior (e.g. optical) properties, compatible with Si technology. In this work we shed light on the atomic-scale mechanisms leading to phase transformations in Si under pressure. To do so, we synergically exploit different state-of-the-art approaches. In particular, we use the advanced GAP interatomic potential both in NPT molecular dynamics simulations and in solid-state nudged elastic band calculations, validating our predictions with ab initio DFT calculations.
We provide a link between evidence reported in experimental nanoindentation literature and simulation results. Particular attention is dedicated to the investigation of atomistic transition paths allowing for the transformation between BC8/R8 phases to the hd one under pure annealing. In this case we show a direct simulation of the local nucleation of the hexagonal phase in a BC8/R8 matrix and its corresponding atomic-scale mechanism extracted by the use of SS-NEB. We extend our study investigating the effect of pressure on the nucleation barrier, providing an argument for explaining the heterogeneous nucleation of the hd phase and unraveling its main parameters with possible applications to the design of nanostructured materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示驱动硅中压力诱导相变的原子尺度路径
硅表现出几个亚稳态同素异形体,最近引起了人们对具有优越(例如光学)性能的材料的关注,与硅技术兼容。在这项工作中,我们揭示了导致硅在压力下相变的原子尺度机制。为此,我们协同利用各种最先进的方法。特别是,我们在NPT分子动力学模拟和固态微推弹性带计算中使用了先进的GAP原子间势,用从头算DFT计算验证了我们的预测。我们提供了在实验纳米压痕文献和模拟结果报告的证据之间的联系。特别关注了在纯退火条件下允许BC8/R8相向hd相转变的原子跃迁路径的研究。在这种情况下,我们展示了BC8/R8矩阵中六方相局部成核的直接模拟,以及使用SS-NEB提取的相应的原子尺度机制。我们扩展了我们的研究,调查压力对成核屏障的影响,为解释hd相的非均相成核和揭示其主要参数提供了一个论据,并可能应用于纳米结构材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Hierarchical MnO2 nanosheets decorated on hollow co/N-doped carbon toward superior electromagnetic wave absorption Study on grain size dependence of shape memory effect in nanocrystalline NiTi shape memory alloys with grain size below 20 nm based on molecular dynamics simulation Flexible ultrabroadband near-perfect absorber enabled by synergistic effects of cavity mode overlap and broadband anti-reflection A novel flexible non-enzymatic composite-metal glucose detection sensor in sweat based on platinum in situ plating of liquid metal Surfactant-free colloidal gold nanoparticles: Room temperature synthesis, size control and opportunities for catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1