Agnese Bondi , Francesca Ferrara , Walter Pula , Paolo Mariani , Alessia Pepe , Markus Drechsler , Leda Montesi , Stefano Manfredini , Giuseppe Valacchi , Elisabetta Esposito
{"title":"Spongosome-based co-delivery of curcumin and Piperine: A novel strategy for mitigating pollution-induced skin damage","authors":"Agnese Bondi , Francesca Ferrara , Walter Pula , Paolo Mariani , Alessia Pepe , Markus Drechsler , Leda Montesi , Stefano Manfredini , Giuseppe Valacchi , Elisabetta Esposito","doi":"10.1016/j.colcom.2024.100811","DOIUrl":null,"url":null,"abstract":"<div><div>The present study aims to explore the potential role of curcumin and piperine loaded spongosomes to protect the skin against pollution-induced damage. The hydration of a glyceryl monooleate and sodium cholate thin film, followed by homogenization, led to dispersions with an internal spongiform structure, as demonstrated by cryogenic transmission electron microscopy and small angle X-ray scattering. Spongosome mean diameter measured by photon correlation spectroscopy was roughly 200 nm. Curcumin and piperine were efficiently encapsulated in spongosomes, as demonstrated by ultrafiltration and HPLC analysis. In vitro permeation tests revealed that piperine enhances the penetration of curcumin, suggesting a further improved bioavailability and sustained release. Ex vivo studies using human skin biopsies showed that curcumin and piperine-loaded spongosomes protect the skin against diesel exhaust emissions, preserving the levels of key skin barrier proteins, as filaggrin and involucrin. The formulations exhibited non-irritating properties in human patch tests, supporting their suitability for topical application.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"63 ","pages":"Article 100811"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000463","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to explore the potential role of curcumin and piperine loaded spongosomes to protect the skin against pollution-induced damage. The hydration of a glyceryl monooleate and sodium cholate thin film, followed by homogenization, led to dispersions with an internal spongiform structure, as demonstrated by cryogenic transmission electron microscopy and small angle X-ray scattering. Spongosome mean diameter measured by photon correlation spectroscopy was roughly 200 nm. Curcumin and piperine were efficiently encapsulated in spongosomes, as demonstrated by ultrafiltration and HPLC analysis. In vitro permeation tests revealed that piperine enhances the penetration of curcumin, suggesting a further improved bioavailability and sustained release. Ex vivo studies using human skin biopsies showed that curcumin and piperine-loaded spongosomes protect the skin against diesel exhaust emissions, preserving the levels of key skin barrier proteins, as filaggrin and involucrin. The formulations exhibited non-irritating properties in human patch tests, supporting their suitability for topical application.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.