Generalizable and explainable deep learning for medical image computing: An overview

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL Current Opinion in Biomedical Engineering Pub Date : 2024-11-14 DOI:10.1016/j.cobme.2024.100567
Ahmad Chaddad , Yan Hu , Yihang Wu , Binbin Wen , Reem Kateb
{"title":"Generalizable and explainable deep learning for medical image computing: An overview","authors":"Ahmad Chaddad ,&nbsp;Yan Hu ,&nbsp;Yihang Wu ,&nbsp;Binbin Wen ,&nbsp;Reem Kateb","doi":"10.1016/j.cobme.2024.100567","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This paper presents an overview of generalizable and explainable artificial intelligence (XAI) in deep learning (DL) for medical imaging, with the aim of addressing the urgent need for transparency and explainability in clinical applications.</div></div><div><h3>Methodology</h3><div>We propose to use four CNNs in three medical datasets (brain tumor, skin cancer, and chest x-ray) for medical image classification tasks. Furthermore, we combine ResNet50 with five common XAI techniques to obtain explainable results for model prediction, in order to improve model transparency. We also involve a quantitative metric (confidence increase) to evaluate the usefulness of XAI techniques.</div></div><div><h3>Key findings</h3><div>The experimental results indicate that ResNet50 can achieve feasible accuracy and F1 score in all datasets (e.g., 86.31 % accuracy in skin cancer). Furthermore, the findings show that while certain XAI methods, such as eXplanation with Gradient-weighted Class activation mapping (XgradCAM), effectively highlight relevant abnormal regions in medical images, others, such as EigenGradCAM, may perform less effectively in specific scenarios. In addition, XgradCAM indicates higher confidence increase (e.g., 0.12 in glioma tumor) compared to GradCAM++ (0.09) and LayerCAM (0.08).</div></div><div><h3>Implications</h3><div>Based on the experimental results and recent advancements, we outline future research directions to enhance the generalizability of DL models in the field of biomedical imaging.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"33 ","pages":"Article 100567"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000473","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This paper presents an overview of generalizable and explainable artificial intelligence (XAI) in deep learning (DL) for medical imaging, with the aim of addressing the urgent need for transparency and explainability in clinical applications.

Methodology

We propose to use four CNNs in three medical datasets (brain tumor, skin cancer, and chest x-ray) for medical image classification tasks. Furthermore, we combine ResNet50 with five common XAI techniques to obtain explainable results for model prediction, in order to improve model transparency. We also involve a quantitative metric (confidence increase) to evaluate the usefulness of XAI techniques.

Key findings

The experimental results indicate that ResNet50 can achieve feasible accuracy and F1 score in all datasets (e.g., 86.31 % accuracy in skin cancer). Furthermore, the findings show that while certain XAI methods, such as eXplanation with Gradient-weighted Class activation mapping (XgradCAM), effectively highlight relevant abnormal regions in medical images, others, such as EigenGradCAM, may perform less effectively in specific scenarios. In addition, XgradCAM indicates higher confidence increase (e.g., 0.12 in glioma tumor) compared to GradCAM++ (0.09) and LayerCAM (0.08).

Implications

Based on the experimental results and recent advancements, we outline future research directions to enhance the generalizability of DL models in the field of biomedical imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学图像计算的可概括和可解释的深度学习:概述
目的综述了医学影像深度学习(DL)中可推广和可解释的人工智能(XAI),旨在解决临床应用中对透明度和可解释性的迫切需求。我们建议在三个医学数据集(脑肿瘤、皮肤癌和胸部x射线)中使用四个cnn进行医学图像分类任务。此外,我们将ResNet50与五种常见的XAI技术相结合,以获得可解释的模型预测结果,以提高模型透明度。我们还涉及定量度量(置信度增加)来评估XAI技术的有用性。实验结果表明,ResNet50在所有数据集上都能达到可行的准确率和F1评分(例如,在皮肤癌上的准确率为86.31%)。此外,研究结果表明,虽然某些XAI方法,如带有梯度加权类激活映射的解释(XgradCAM),可以有效地突出医学图像中的相关异常区域,但其他方法,如EigenGradCAM,在特定场景下的效果可能不太好。此外,与GradCAM++(0.09)和LayerCAM(0.08)相比,XgradCAM显示更高的置信度增加(如胶质瘤肿瘤为0.12)。基于实验结果和最新进展,我们概述了未来的研究方向,以提高深度学习模型在生物医学成像领域的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
期刊最新文献
Photonic crystal colorimetric sensing in heart-on-a-chip systems 3M engineering approaches to combat high-shear thrombosis: Integrating modeling, microfluidics, and mechanobiology Recent advances in facilitating the translation of bioelectronic medicine therapies 3D fabrication of artificial cell microenvironments for mechanobiology Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1