Thomas Body , Thomas Eich , Adam Kuang , Tom Looby , Mike Kryjak , Ben Dudson , Matthew Reinke
{"title":"Detachment scalings derived from 1D scrape-off-layer simulations","authors":"Thomas Body , Thomas Eich , Adam Kuang , Tom Looby , Mike Kryjak , Ben Dudson , Matthew Reinke","doi":"10.1016/j.nme.2024.101819","DOIUrl":null,"url":null,"abstract":"<div><div>Fusion power plants will require detachment to mitigate sputtering and keep divertor heat fluxes at tolerable levels. Controlling detachment on these devices may require the use of real-time scrape-off-layer modeling to complement the limited set of available diagnostics. In this work, we use the configurable Hermes-3 edge modeling framework to perform time-dependent, fixed-fraction-impurity 1D detachment simulations. Although currently far from real-time, these simulations are used to investigate time-dependent effects and the minimum physics set required for control-relevant modeling. We show that these simulations reproduce the expected rollover of the target ion flux — a typical characteristic of detachment onset. We also perform scans of the input heat flux and impurity concentration and show that the steady-state results closely match the scalings predicted by the 0D time-independent Lengyel–Goedheer model. This allows us to indirectly compare to SOLPS simulations, which find a similar scaling but a lower value for the impurity concentration required for detachment for given upstream conditions. We use this result to suggest a series of improvements for the Hermes simulations, and finally show simulations demonstrating the impact of time-dependence.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101819"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124002424","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusion power plants will require detachment to mitigate sputtering and keep divertor heat fluxes at tolerable levels. Controlling detachment on these devices may require the use of real-time scrape-off-layer modeling to complement the limited set of available diagnostics. In this work, we use the configurable Hermes-3 edge modeling framework to perform time-dependent, fixed-fraction-impurity 1D detachment simulations. Although currently far from real-time, these simulations are used to investigate time-dependent effects and the minimum physics set required for control-relevant modeling. We show that these simulations reproduce the expected rollover of the target ion flux — a typical characteristic of detachment onset. We also perform scans of the input heat flux and impurity concentration and show that the steady-state results closely match the scalings predicted by the 0D time-independent Lengyel–Goedheer model. This allows us to indirectly compare to SOLPS simulations, which find a similar scaling but a lower value for the impurity concentration required for detachment for given upstream conditions. We use this result to suggest a series of improvements for the Hermes simulations, and finally show simulations demonstrating the impact of time-dependence.
期刊介绍:
The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.