Thermomechanical analysis for the theoretical optimization of W/Cu monoblocks with functionally graded interlayer

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2025-03-13 DOI:10.1016/j.nme.2025.101919
Yi Li , Dahuan Zhu , Chunyu He , Zongxiao Guo , Yang Wang , Chuannan Xuan , Baoguo Wang , Junling Chen , EAST Team
{"title":"Thermomechanical analysis for the theoretical optimization of W/Cu monoblocks with functionally graded interlayer","authors":"Yi Li ,&nbsp;Dahuan Zhu ,&nbsp;Chunyu He ,&nbsp;Zongxiao Guo ,&nbsp;Yang Wang ,&nbsp;Chuannan Xuan ,&nbsp;Baoguo Wang ,&nbsp;Junling Chen ,&nbsp;EAST Team","doi":"10.1016/j.nme.2025.101919","DOIUrl":null,"url":null,"abstract":"<div><div>In fusion devices, plasma-facing components (PFCs) play a critical role in withstanding severe thermal conditions resulting from cyclic high heat flux (HHF) loads. The International Thermonuclear Experimental Reactor (ITER) and next-generation fusion devices are expected to employ actively cooled tungsten/copper (W/Cu) monoblocks as divertor targets due to their excellent heat removal capabilities. Although ITER-like monoblocks utilize a soft Cu interlayer to alleviate stress, interface fatigue cracking still occurs under cyclic HHF loads. The issue of interface bonding between the W armor and heat sink has been a limiting factor for the long-term stable operation and structural integrity of these monoblocks. Functionally graded materials (FGMs) are regarded as an effective approach to address severe local stress concentration at the bonding interface. The number of layers, composition distribution, and thickness of the FGM layers are analyzed by evaluating the stress and strain after the loading and cooling phases in finite element simulations. The simulation results indicate that the graded interlayer can significantly reduce stress concentration at the interface, and a two-layer FGM (25 vol% and 66.7 vol% W) with each layer 0.6 mm thick can greatly mitigate both stress and strain. Such results provide important guidance for the development of graded W/Cu monoblocks for fusion applications.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"43 ","pages":"Article 101919"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179125000602","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In fusion devices, plasma-facing components (PFCs) play a critical role in withstanding severe thermal conditions resulting from cyclic high heat flux (HHF) loads. The International Thermonuclear Experimental Reactor (ITER) and next-generation fusion devices are expected to employ actively cooled tungsten/copper (W/Cu) monoblocks as divertor targets due to their excellent heat removal capabilities. Although ITER-like monoblocks utilize a soft Cu interlayer to alleviate stress, interface fatigue cracking still occurs under cyclic HHF loads. The issue of interface bonding between the W armor and heat sink has been a limiting factor for the long-term stable operation and structural integrity of these monoblocks. Functionally graded materials (FGMs) are regarded as an effective approach to address severe local stress concentration at the bonding interface. The number of layers, composition distribution, and thickness of the FGM layers are analyzed by evaluating the stress and strain after the loading and cooling phases in finite element simulations. The simulation results indicate that the graded interlayer can significantly reduce stress concentration at the interface, and a two-layer FGM (25 vol% and 66.7 vol% W) with each layer 0.6 mm thick can greatly mitigate both stress and strain. Such results provide important guidance for the development of graded W/Cu monoblocks for fusion applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Resistance to deuterium-induced blistering in laminated microstructure tungsten Thermomechanical analysis for the theoretical optimization of W/Cu monoblocks with functionally graded interlayer Reimplantation of supporting legs on EAST divertor by electron beam brazing First ion temperature measurements in the MAST-U divertor via Retarding Field Energy Analyzer Hermes-3 simulation of the low-n X-point mode driven by impurity in tokamak edge plasmas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1