Disturbance Rejection Control for Autonomous Trolley Collection Robots with Prescribed Performance

Rui-Dong Xi , Tie-Nan Ma , Bingyi Xia , Xue Zhang , Yixuan Yuan , Jiankun Wang , Max Q.-H. Meng
{"title":"Disturbance Rejection Control for Autonomous Trolley Collection Robots with Prescribed Performance","authors":"Rui-Dong Xi ,&nbsp;Tie-Nan Ma ,&nbsp;Bingyi Xia ,&nbsp;Xue Zhang ,&nbsp;Yixuan Yuan ,&nbsp;Jiankun Wang ,&nbsp;Max Q.-H. Meng","doi":"10.1016/j.procs.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Trajectory tracking control of autonomous trolley collection robots (ATCR) is a challenging task due to the complex environment, significant noise, and external disturbances. To address these challenges, this work investigates a control scheme for ATCRs subject to severe environmental interference. A fast-convergent, kinematics model-based adaptive sliding mode disturbance observer (ASMDOB) is first proposed to estimate lumped disturbances. Building upon this, a robust controller with prescribed performance is designed using the backstepping technique, improving transient performance and guaranteeing fast convergence. Simulation results have been given to illustrate the effectiveness of the proposed control scheme.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"250 ","pages":"Pages 15-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924032058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory tracking control of autonomous trolley collection robots (ATCR) is a challenging task due to the complex environment, significant noise, and external disturbances. To address these challenges, this work investigates a control scheme for ATCRs subject to severe environmental interference. A fast-convergent, kinematics model-based adaptive sliding mode disturbance observer (ASMDOB) is first proposed to estimate lumped disturbances. Building upon this, a robust controller with prescribed performance is designed using the backstepping technique, improving transient performance and guaranteeing fast convergence. Simulation results have been given to illustrate the effectiveness of the proposed control scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有预定性能的自动小车采集机器人抗扰控制
由于环境复杂、噪声大、外部干扰大,自动小车采集机器人的轨迹跟踪控制是一项具有挑战性的任务。为了解决这些挑战,本工作研究了受严重环境干扰的atcr控制方案。首先提出了一种快速收敛的、基于运动学模型的自适应滑模扰动观测器(ASMDOB)来估计集总扰动。在此基础上,利用反演技术设计了具有规定性能的鲁棒控制器,提高了暂态性能,保证了快速收敛。仿真结果验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Contents Contents Contents Preface Predicting Institute Graduation Rate using Evolutionary Computing and Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1