{"title":"Carboxylic acid-based fuel mediated sustainable one-pot fabrication of CaFe2O4 with enhanced adsorptive elimination of hazardous dye","authors":"Dharmaraj J. Patil, Harpreet Singh Grewal","doi":"10.1016/j.inoche.2024.113601","DOIUrl":null,"url":null,"abstract":"<div><div>The present work successfully demonstrated the morphological variation of CaFe<sub>2</sub>O<sub>4</sub> (CFO) concerning various fuels (carboxylic acid groups contain compounds) using a one-step combustion technique. The SEM analysis of the CFO suggests the formation of sharp-edge rocky crystals to highly agglomerated porous clumps concerning the role of fuel. The x-ray diffraction analysis suggests that all samples of CFO are nanocrystalline orthorhombic structure constituted <50 nm. The BET and EDX analysis discloses that CFO s surface area and element composition is highly depend on the fuel molecule (reducer). The CFO performs efficacious in the adsorptive removal of hazardous dye Acid Fuchsin (AF) from an aqueous medium in a slightly acidic environment (pH 6). The AF removal was engaged with the batch adsorption method and optimized the process’s essential parameters (amount of adsorbent, initial AF concentration, and time) were optimized to achieve the utmost efficiency. The AF adsorption was well described by the Langmuir isotherm with outstanding adsorption capacity in the order of CFO-OA (Oxalic acid) (866) < CFO-TA (Tartaric acid) (1063) < CFO-CA (Citric acid) (1504) < CFO-MA (Malonic acid) (1656 mg/g). The adsorption energies were estimated from the Dubinin-Radushkevich model, indicating that adsorption occurs via the chemical process. The pseudo-second-order (PSO) kinetic model was better at explaining the uptake of AF, and the Intraparticle diffusion model indicated that pore diffusion was the rate-controlling step. The reusability test shows that the CFO has high efficiency up to five regeneration cycles. Thus, the work suggests that CFO could be an eco-friendly, cost-effective alternative adsorbent for wastewater treatment.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113601"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015910","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The present work successfully demonstrated the morphological variation of CaFe2O4 (CFO) concerning various fuels (carboxylic acid groups contain compounds) using a one-step combustion technique. The SEM analysis of the CFO suggests the formation of sharp-edge rocky crystals to highly agglomerated porous clumps concerning the role of fuel. The x-ray diffraction analysis suggests that all samples of CFO are nanocrystalline orthorhombic structure constituted <50 nm. The BET and EDX analysis discloses that CFO s surface area and element composition is highly depend on the fuel molecule (reducer). The CFO performs efficacious in the adsorptive removal of hazardous dye Acid Fuchsin (AF) from an aqueous medium in a slightly acidic environment (pH 6). The AF removal was engaged with the batch adsorption method and optimized the process’s essential parameters (amount of adsorbent, initial AF concentration, and time) were optimized to achieve the utmost efficiency. The AF adsorption was well described by the Langmuir isotherm with outstanding adsorption capacity in the order of CFO-OA (Oxalic acid) (866) < CFO-TA (Tartaric acid) (1063) < CFO-CA (Citric acid) (1504) < CFO-MA (Malonic acid) (1656 mg/g). The adsorption energies were estimated from the Dubinin-Radushkevich model, indicating that adsorption occurs via the chemical process. The pseudo-second-order (PSO) kinetic model was better at explaining the uptake of AF, and the Intraparticle diffusion model indicated that pore diffusion was the rate-controlling step. The reusability test shows that the CFO has high efficiency up to five regeneration cycles. Thus, the work suggests that CFO could be an eco-friendly, cost-effective alternative adsorbent for wastewater treatment.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.