MP-KAN: An effective magnetic positioning algorithm based on Kolmogorov-Arnold network

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-19 DOI:10.1016/j.measurement.2024.116248
Zibo Gao, Ming Kong
{"title":"MP-KAN: An effective magnetic positioning algorithm based on Kolmogorov-Arnold network","authors":"Zibo Gao,&nbsp;Ming Kong","doi":"10.1016/j.measurement.2024.116248","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"243 ","pages":"Article 116248"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026322412402133X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic Positioning (MP) technology represents a novel approach to locating spatial particles, notably medical capsules, wherein the inherently weak and susceptible-to-interference magnetic signals pose stringent demands on spatial positioning algorithms. Traditional methods are usually limited to polynomial fitting, which limits the generalization of the algorithm and the positioning accuracy of the near field part. In this paper, we introduce a magnetic positioning algorithm grounded in the Kolmogorov-Arnold network (MP-KAN), innovatively introduces the neural network method into the magnetic positioning system, providing a novel research idea for the positioning algorithm. Distinguishing from the learnable weight parameters inherent in the traditional model, the KAN network introduces a learnable activation function formulated through spline functions. This innovation enhances model accuracy by leveraging multiple spline curves and executing summation operations at nodes to facilitate regression predictions. Furthermore, the residual of the predicted position and the L1-parameter in the KAN layer and its entropy regularization are used as the prediction loss, and thresholds are strategically set at the network nodes to enhance the generalization ability of the model and obtain the optimal configuration. The proposed method achieves the goal of improving the positioning accuracy of the system while ensuring that the algorithm has a nearly constant positioning accuracy regardless of the distance between the target and the measurement system. The results of an experimental demonstrate that the maximum positioning error within the data set stands at 0.24 mm, the maximum relative error is 5.72 %, the minimum relative error is 0.25 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1