Lattice Boltzmann modeling for enhanced membrane separation of geothermal energy utilization

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-20 DOI:10.1016/j.applthermaleng.2024.124912
Youfei Tang, Zongliang Qiao, Yue Cao, Chengbin Zhang, Fengqi Si
{"title":"Lattice Boltzmann modeling for enhanced membrane separation of geothermal energy utilization","authors":"Youfei Tang,&nbsp;Zongliang Qiao,&nbsp;Yue Cao,&nbsp;Chengbin Zhang,&nbsp;Fengqi Si","doi":"10.1016/j.applthermaleng.2024.124912","DOIUrl":null,"url":null,"abstract":"<div><div>Reducing carbon emissions and utilizing geothermal energy via supercritical carbon dioxide extraction from reservoirs for direct power generation necessitates the removal of mixed vapor. A shell-tube hollow fiber membrane contactor, utilizing differential pressure and absorption fluid, is devised for vapor absorption. This membrane-based separation process encompasses a multicomponent multiphase system of supercritical carbon dioxide and water, water-salt transport, and mass transfer across the porous membrane. To investigate pore-scale mass transfer, a multicomponent multiphase pseudopotential lattice Boltzmann model is established, simulating carbon dioxide-water two-phase flow, coupled with a continuous species transfer model for salt behavior in the absorbent. Flow direction analysis reveals countercurrent flow as superior to cocurrent for vapor absorption. Augmenting the original membrane with equal macropore counts enhances mass transfer, with increasing size amplifying the effect. Macropore arrangements at constant porosity suggest minimizing resistance in the propagation path as crucial for mass transport improvement. A left-small-right-large macropore size gradient distribution outperforms its reverse counterpart, enhancing performance by approximately 20%. This is attributed to larger macropores in high-concentration regions facilitating localized vapor transport.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"260 ","pages":"Article 124912"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124025808","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing carbon emissions and utilizing geothermal energy via supercritical carbon dioxide extraction from reservoirs for direct power generation necessitates the removal of mixed vapor. A shell-tube hollow fiber membrane contactor, utilizing differential pressure and absorption fluid, is devised for vapor absorption. This membrane-based separation process encompasses a multicomponent multiphase system of supercritical carbon dioxide and water, water-salt transport, and mass transfer across the porous membrane. To investigate pore-scale mass transfer, a multicomponent multiphase pseudopotential lattice Boltzmann model is established, simulating carbon dioxide-water two-phase flow, coupled with a continuous species transfer model for salt behavior in the absorbent. Flow direction analysis reveals countercurrent flow as superior to cocurrent for vapor absorption. Augmenting the original membrane with equal macropore counts enhances mass transfer, with increasing size amplifying the effect. Macropore arrangements at constant porosity suggest minimizing resistance in the propagation path as crucial for mass transport improvement. A left-small-right-large macropore size gradient distribution outperforms its reverse counterpart, enhancing performance by approximately 20%. This is attributed to larger macropores in high-concentration regions facilitating localized vapor transport.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
栅格玻尔兹曼模型增强膜分离地热能利用
通过从储层中超临界提取二氧化碳来减少碳排放和利用地热能进行直接发电,需要去除混合蒸汽。设计了一种利用差压和吸收流体进行蒸汽吸收的壳管中空纤维膜接触器。这种基于膜的分离过程包括超临界二氧化碳和水的多组分多相系统,水盐运输,以及多孔膜上的传质。为了研究孔隙尺度的传质,建立了一个多组分多相伪势晶格玻尔兹曼模型,模拟二氧化碳-水两相流动,并结合吸收剂中盐行为的连续物种传递模型。流动方向分析表明,逆流比共流更有利于蒸汽吸收。用相等的大孔数增加原膜可以增强传质,增大膜的大小可以放大传质效果。恒定孔隙率下的大孔排列表明,将传播路径中的阻力最小化是改善质量传递的关键。左-小-右-大的大孔径梯度分布优于相反的大孔径梯度分布,性能提高了约20%。这是由于高浓度区域的大孔隙有利于局部蒸汽输送。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Impact of oxygen levels and end-of-injection rate profiles on combustion recession dynamics in n-dodecane spray flames under engine-like conditions Energy, economic and environmental assessment of a photovoltaic-driven dew-point evaporative cooling system Investigation on displacer-type pulse tube refrigerator performance using helium‑nitrogen refrigerant mixtures Mechanistic modeling and thermodynamic optimization of solar-powered membrane-based air humidification-dehumidification seawater desalination system Response surface optimization of perforated solar air heater with novel gong-shaped baffles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1