Highly sensitive detection of Campylobacter jejuni using a carbon dot-embedded nanoMIPs fluorescent sensor

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2024-11-27 DOI:10.1016/j.microc.2024.112301
Saliha Dinç , Tim Tjardts , Gregor Maschkowitz , Vivian Lukaszczuk , Seyed Mohammad Taghi Gharibzahedi , Zeynep Altintas
{"title":"Highly sensitive detection of Campylobacter jejuni using a carbon dot-embedded nanoMIPs fluorescent sensor","authors":"Saliha Dinç ,&nbsp;Tim Tjardts ,&nbsp;Gregor Maschkowitz ,&nbsp;Vivian Lukaszczuk ,&nbsp;Seyed Mohammad Taghi Gharibzahedi ,&nbsp;Zeynep Altintas","doi":"10.1016/j.microc.2024.112301","DOIUrl":null,"url":null,"abstract":"<div><div><em>Campylobacter jejuni</em>, a leading cause of gastroenteritis worldwide, poses significant detection challenges due to the labor-intensive and insufficiently sensitive current methods. Developing efficient, rapid diagnostics is vital for clinical and food industry applications; yet the vulnerability of biological elements in creating bacterial sensors remains a major obstacle. This study introduces an innovative fluorescence-based sensor employing fully synthetic carbon dot (CDs) functionalized molecularly imprinted polymer (CDs@nanoMIPs) receptors to detect this foodborne pathogenic bacterium. The CDs@nanoMIPs synthesis was accomplished using a solid-phase approach, with an immunodominant epitope of <em>C. jejuni</em> serving as a guiding template. During the polymerization process, nitrogen-doped CDs were synthesized in situ and incorporated into nanoMIPs as a fluorescent tag, constituting approximately 19 % of the composite. The synthesized nanomaterials were characterized by employing transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FT-IR), fluorescence microscopy, UV–Vis spectrophotometry, and fluorescence spectrometry. CDs@nanoMIPs demonstrated a notable blue fluorescence when excited at 350 nm, along with excellent photostability and a negative zeta potential. These nanostructured particles (59 nm) exhibited moderate polydispersity and a spherical morphology. The FT-IR spectrum deviated from that of conventional CDs, aligning more closely with the template epitope. When in contact with <em>C. jejuni</em>, CDs@nanoMIPs induced a significant increase in fluorescence intensity, enabling the efficient bacterial detection. This interaction showed exceptional affinity and sensitivity towards <em>C. jejuni</em>, featuring a linear range of 1 × 10<sup>1</sup>–1 × 10<sup>8</sup> CFU mL<sup>−1</sup> (R<sup>2</sup> = 0.98) and a low detection limit of 4.6 CFU mL<sup>−1</sup>. CDs@nanoMIPs-based <em>C. jejuni</em> sensors marked a novel approach to pathogen detection.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"208 ","pages":"Article 112301"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24024135","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Campylobacter jejuni, a leading cause of gastroenteritis worldwide, poses significant detection challenges due to the labor-intensive and insufficiently sensitive current methods. Developing efficient, rapid diagnostics is vital for clinical and food industry applications; yet the vulnerability of biological elements in creating bacterial sensors remains a major obstacle. This study introduces an innovative fluorescence-based sensor employing fully synthetic carbon dot (CDs) functionalized molecularly imprinted polymer (CDs@nanoMIPs) receptors to detect this foodborne pathogenic bacterium. The CDs@nanoMIPs synthesis was accomplished using a solid-phase approach, with an immunodominant epitope of C. jejuni serving as a guiding template. During the polymerization process, nitrogen-doped CDs were synthesized in situ and incorporated into nanoMIPs as a fluorescent tag, constituting approximately 19 % of the composite. The synthesized nanomaterials were characterized by employing transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FT-IR), fluorescence microscopy, UV–Vis spectrophotometry, and fluorescence spectrometry. CDs@nanoMIPs demonstrated a notable blue fluorescence when excited at 350 nm, along with excellent photostability and a negative zeta potential. These nanostructured particles (59 nm) exhibited moderate polydispersity and a spherical morphology. The FT-IR spectrum deviated from that of conventional CDs, aligning more closely with the template epitope. When in contact with C. jejuni, CDs@nanoMIPs induced a significant increase in fluorescence intensity, enabling the efficient bacterial detection. This interaction showed exceptional affinity and sensitivity towards C. jejuni, featuring a linear range of 1 × 101–1 × 108 CFU mL−1 (R2 = 0.98) and a low detection limit of 4.6 CFU mL−1. CDs@nanoMIPs-based C. jejuni sensors marked a novel approach to pathogen detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Competitive adsorption of two phenolic pollutants compounds using a novel biosorbent: Analytics (HPLC), Statistical (experimental design), and theoretical studies (DFT) Strategy of mass defect filter combined with characteristic fragment analysis for the chemical profiling of Dictamnus dasycarpus Turcz. From multiple regions A comprehensive review on niclosamide detection in foodstuffs and pharmaceutical preparations: Diverse analytical approaches and emerging techniques Polycatechol coated cigarette filter as a sorbent for microextraction by packed sorbent of acidic non-steroidal anti-inflammatory drugs (NSAIDs) from wastewater samples Detection of parvovirus B19 genomic fragments using an electrochemical biosensor based on argonaute-assisted silver metallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1