Three-dimensional fluorescence spectral characteristic of flavonoids for citrus Huanglongbing disease early detection

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL Microchemical Journal Pub Date : 2024-11-26 DOI:10.1016/j.microc.2024.112263
Kangting Yan , Xiaoyang Lu , Junqi Xiao , Xiaobing Song , Xidan Xu , Jun Guo , Weiguang Yang , Yali Zhang , Yubin Lan
{"title":"Three-dimensional fluorescence spectral characteristic of flavonoids for citrus Huanglongbing disease early detection","authors":"Kangting Yan ,&nbsp;Xiaoyang Lu ,&nbsp;Junqi Xiao ,&nbsp;Xiaobing Song ,&nbsp;Xidan Xu ,&nbsp;Jun Guo ,&nbsp;Weiguang Yang ,&nbsp;Yali Zhang ,&nbsp;Yubin Lan","doi":"10.1016/j.microc.2024.112263","DOIUrl":null,"url":null,"abstract":"<div><div>To explore the potential of using flavonoid fluorescence characteristics in citrus leaves and peels for detecting citrus Huanglongbing (HLB), this study focused on <em>Citrus reticulata</em> ‘Shiyue Ju’ and utilized three-dimensional fluorescence spectroscopy for data collection. Excitation-Emission matrices (EEM) of flavonoid standards and citrus leaves and peels were acquired and comparatively analyzed. The concentration of HLB pathogens in citrus tissues was also assessed using qPCR. In order to identify the range of fluorescence bands that are sensitive to HLB, different machine-learning algorithms were used to construct classification models. Support Vector Machine (SVM) was proved most precise, with 93.1 % accuracy for leaves and 86.67 % for peels. The sensitive bands for leaves were EX (Excitation) = 375–455 nm, EM (Emission) = 490–570 nm and for peels were EX = 300–340 nm, EM = 430–470 nm and EX = 330–370 nm, EM = 425–465 nm. These bands correspond closely with the fluorescence signatures of nobiletin, hesperidin, and narirutin. It was further verified that HLB stress affected the changes in the content of flavonoids in the leaves and peels of ‘Shiyue Ju’. This study provides a reference for using flavonoid fluorescence in citrus HLB detection and presents a novel approach for applying spectral imaging techniques in citrus HLB detection.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"208 ","pages":"Article 112263"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24023750","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To explore the potential of using flavonoid fluorescence characteristics in citrus leaves and peels for detecting citrus Huanglongbing (HLB), this study focused on Citrus reticulata ‘Shiyue Ju’ and utilized three-dimensional fluorescence spectroscopy for data collection. Excitation-Emission matrices (EEM) of flavonoid standards and citrus leaves and peels were acquired and comparatively analyzed. The concentration of HLB pathogens in citrus tissues was also assessed using qPCR. In order to identify the range of fluorescence bands that are sensitive to HLB, different machine-learning algorithms were used to construct classification models. Support Vector Machine (SVM) was proved most precise, with 93.1 % accuracy for leaves and 86.67 % for peels. The sensitive bands for leaves were EX (Excitation) = 375–455 nm, EM (Emission) = 490–570 nm and for peels were EX = 300–340 nm, EM = 430–470 nm and EX = 330–370 nm, EM = 425–465 nm. These bands correspond closely with the fluorescence signatures of nobiletin, hesperidin, and narirutin. It was further verified that HLB stress affected the changes in the content of flavonoids in the leaves and peels of ‘Shiyue Ju’. This study provides a reference for using flavonoid fluorescence in citrus HLB detection and presents a novel approach for applying spectral imaging techniques in citrus HLB detection.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
期刊最新文献
Detection of parvovirus B19 genomic fragments using an electrochemical biosensor based on argonaute-assisted silver metallization Comparison of total phenolic content in organic and conventional carrot under different drying conditions using non-destructive analysis techniques Highly sensitive detection of Campylobacter jejuni using a carbon dot-embedded nanoMIPs fluorescent sensor Hallucinogens in different complex samples: Recent updates on pretreatment and analysis methods since 2017 Three-dimensional fluorescence spectral characteristic of flavonoids for citrus Huanglongbing disease early detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1