Glyphosate and glyphosate-based herbicides induce Poecilia reticulata to maintain redox equilibrium during and after coexposure to iron oxide nanoparticles (y-Fe2O3)

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2024-11-24 DOI:10.1016/j.aquatox.2024.107175
João Marcos de Lima Faria , Mariana Morozesk , Iara da Costa Souza , Victória Costa da Silva , Luiz Arthur Mendes Bataus , Simone Maria Teixeira de Sabóia-Morais , Marisa Narciso Fernandes
{"title":"Glyphosate and glyphosate-based herbicides induce Poecilia reticulata to maintain redox equilibrium during and after coexposure to iron oxide nanoparticles (y-Fe2O3)","authors":"João Marcos de Lima Faria ,&nbsp;Mariana Morozesk ,&nbsp;Iara da Costa Souza ,&nbsp;Victória Costa da Silva ,&nbsp;Luiz Arthur Mendes Bataus ,&nbsp;Simone Maria Teixeira de Sabóia-Morais ,&nbsp;Marisa Narciso Fernandes","doi":"10.1016/j.aquatox.2024.107175","DOIUrl":null,"url":null,"abstract":"<div><div>Iron oxide nanoparticles (IONPs) are being increasingly recognized as viable materials for environmental remediation due to their capacity to adsorb contaminants such as glyphosate (GLY) on their surfaces. Nevertheless, the ecotoxicological implications of IONPs associated with GLY necessitate thorough evaluation to ascertain the safety of such remediation strategies. In this context, the present investigation was conducted to examine hepatic biomarkers pertinent to the redox system, as well as ultrastructural hepatic alterations in <em>Poecilia reticulata</em>, following a 21-day exposure to environmentally relevant concentrations of IONPs, iron ions (Fe), and glyphosate in its pure form (GLY) as well as a commercial glyphosate-based herbicide (GBH). After this exposure, the fish underwent a 21-day recovery in uncontaminated water. The results indicated an increase in the activity of catalase (CAT) and glutathione S-transferase (GST) and in the concentration of glutathione (GSH) in the animals subjected to IONP+GBH and IONP+GLY treatments. This biochemical response persisted for the duration of both the exposure and recovery phases. Concurrently, hepatocytes displayed mitochondria with increased electron density, augmented lipid droplet accumulation, and expanded necrotic areas within the hepatic tissue. In contrast, fish exposed solely to IONPs exhibited sustained redox homeostasis throughout the investigative timeline. These findings suggest that the coexposure toxicity of IONP+GLY and IONP+GBH is attributable to the agent adsorbed onto the IONPs and that <em>P. reticulata</em> could maintain an active antioxidant defense mechanism throughout the entire study period.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107175"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X2400345X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron oxide nanoparticles (IONPs) are being increasingly recognized as viable materials for environmental remediation due to their capacity to adsorb contaminants such as glyphosate (GLY) on their surfaces. Nevertheless, the ecotoxicological implications of IONPs associated with GLY necessitate thorough evaluation to ascertain the safety of such remediation strategies. In this context, the present investigation was conducted to examine hepatic biomarkers pertinent to the redox system, as well as ultrastructural hepatic alterations in Poecilia reticulata, following a 21-day exposure to environmentally relevant concentrations of IONPs, iron ions (Fe), and glyphosate in its pure form (GLY) as well as a commercial glyphosate-based herbicide (GBH). After this exposure, the fish underwent a 21-day recovery in uncontaminated water. The results indicated an increase in the activity of catalase (CAT) and glutathione S-transferase (GST) and in the concentration of glutathione (GSH) in the animals subjected to IONP+GBH and IONP+GLY treatments. This biochemical response persisted for the duration of both the exposure and recovery phases. Concurrently, hepatocytes displayed mitochondria with increased electron density, augmented lipid droplet accumulation, and expanded necrotic areas within the hepatic tissue. In contrast, fish exposed solely to IONPs exhibited sustained redox homeostasis throughout the investigative timeline. These findings suggest that the coexposure toxicity of IONP+GLY and IONP+GBH is attributable to the agent adsorbed onto the IONPs and that P. reticulata could maintain an active antioxidant defense mechanism throughout the entire study period.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Editorial Board Unlocking the combined impact of microplastics and emerging contaminants on fish: A review and meta-analysis Effect of functional groups of polystyrene nanoplastics on the neurodevelopmental toxicity of acrylamide in the early life stage of zebrafish Glyphosate and glyphosate-based herbicides induce Poecilia reticulata to maintain redox equilibrium during and after coexposure to iron oxide nanoparticles (y-Fe2O3) Maternal Daphnia magna exposure to the antidepressant sertraline causes molting disorder, multi-generational reproductive and serotonergic dysfunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1