Okanin alleviates symptoms of nociceptive-like responses in diabetic peripheral neuropathy in type 1 diabetic Wistar rats by regulating the AGEs/NF-κB/Nrf-2 pathway
{"title":"Okanin alleviates symptoms of nociceptive-like responses in diabetic peripheral neuropathy in type 1 diabetic Wistar rats by regulating the AGEs/NF-κB/Nrf-2 pathway","authors":"Mohammad Rafiq Ganie , Nadeem Khan , Manish Shukla , Shreya Sood , Sushma Devi , Poonam Arora , Manish Kumar , Imtiyaz Ahmed Najar , Jianlei Tang","doi":"10.1016/j.jphs.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>Elevated reactive species and AGEs contribute to deregulation of transcription factors <em>e.g.</em>, NF-κB and Nrf2 in diabetic peripheral neuropathy (DPN). Okanin, a bioactive chalcone, is active against redox imbalance, immune response, and pro-inflammatory events. The current investigation assessed effects of okanin in streptozotocin-induced DPN in rats. Wistar rats were divided into 6 groups (<em>n</em> = 6): Control, DPN, Okanin 2.5, Okanin 5, Okanin 10, and Gpn (Gabapentin). After 6 weeks of streptozotocin (55 mg/kg) injection, okanin (2.5, 5, 10 mg/kg), and gabapentin (50 mg/kg), were administered for 4 weeks. The streptozotocin-induced reduction in body weight, and increased feed/water intake, insulin, glucose, and HbA1c levels were mitigated by okanin or gabapentin. In DPN rats, Okanin or gabapentin ameliorated insulin resistance and β-cell function, inflammatory indices, and oxidative stress in the sciatic nerve of rodents thereby culminating in a decrease in hyperalgesia and allodynia. Okanin and streptozotocin-treated rats had significantly declined levels of AGEs, the receptor for AGEs, and NF-κB, and an upsurge in Nrf2 expression. In streptozotocin-induced DPN model, okanin ameliorates nociceptive-like responses by regulating the AGEs/NF-κB/Nrf2 pathway, suggesting that okanin has therapeutic value against DPN which needs further studies involving human subjects.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"157 1","pages":"Pages 12-24"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000732","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Elevated reactive species and AGEs contribute to deregulation of transcription factors e.g., NF-κB and Nrf2 in diabetic peripheral neuropathy (DPN). Okanin, a bioactive chalcone, is active against redox imbalance, immune response, and pro-inflammatory events. The current investigation assessed effects of okanin in streptozotocin-induced DPN in rats. Wistar rats were divided into 6 groups (n = 6): Control, DPN, Okanin 2.5, Okanin 5, Okanin 10, and Gpn (Gabapentin). After 6 weeks of streptozotocin (55 mg/kg) injection, okanin (2.5, 5, 10 mg/kg), and gabapentin (50 mg/kg), were administered for 4 weeks. The streptozotocin-induced reduction in body weight, and increased feed/water intake, insulin, glucose, and HbA1c levels were mitigated by okanin or gabapentin. In DPN rats, Okanin or gabapentin ameliorated insulin resistance and β-cell function, inflammatory indices, and oxidative stress in the sciatic nerve of rodents thereby culminating in a decrease in hyperalgesia and allodynia. Okanin and streptozotocin-treated rats had significantly declined levels of AGEs, the receptor for AGEs, and NF-κB, and an upsurge in Nrf2 expression. In streptozotocin-induced DPN model, okanin ameliorates nociceptive-like responses by regulating the AGEs/NF-κB/Nrf2 pathway, suggesting that okanin has therapeutic value against DPN which needs further studies involving human subjects.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.