Mariya Gubareva , Muhammad Shafiullah , Tamara Teplova
{"title":"Cross-quantile risk assessment: The interplay of crude oil, artificial intelligence, clean tech, and other markets","authors":"Mariya Gubareva , Muhammad Shafiullah , Tamara Teplova","doi":"10.1016/j.eneco.2024.108085","DOIUrl":null,"url":null,"abstract":"<div><div>This paper explores the interconnections among oil, artificial intelligence (AI), clean technology, and traditional markets. We apply a novel generalized quantile-on-quantile connectedness method that assesses variable cross-quantile interdependencies, analyzing data from 2018 to 2023. Our study provides a detailed examination of risk transmission dynamics between oil, AI, clean technology, and major markets including equity, debt, and currency. Our findings indicate that tail risk spillovers are more pronounced than median quantiles. In contrast, the analysis shows negative spillovers across these tails in markets for U.S. government debt, the U.S. dollar, and gold. The dynamic risk transmission analysis reveals that while the stock and AI markets generally act as net transmitters of risk across all quantiles, the crude oil and USD index markets consistently receive net risk spillovers, particularly in the right tail of the distribution. Our results suggest that, on average, AI, and clean technology markets, along with the stock markets, are more likely to transfer risk spillovers compared to debt, currency, or other commodity markets. This positions the USD and crude oil as potential buffers against extreme risk transmissions emanating from the AI and clean technology sectors. This study highlights the complex risk dynamics and the pivotal role of oil in the interplay between emerging technologies and traditional financial markets.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"141 ","pages":"Article 108085"},"PeriodicalIF":13.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988324007941","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the interconnections among oil, artificial intelligence (AI), clean technology, and traditional markets. We apply a novel generalized quantile-on-quantile connectedness method that assesses variable cross-quantile interdependencies, analyzing data from 2018 to 2023. Our study provides a detailed examination of risk transmission dynamics between oil, AI, clean technology, and major markets including equity, debt, and currency. Our findings indicate that tail risk spillovers are more pronounced than median quantiles. In contrast, the analysis shows negative spillovers across these tails in markets for U.S. government debt, the U.S. dollar, and gold. The dynamic risk transmission analysis reveals that while the stock and AI markets generally act as net transmitters of risk across all quantiles, the crude oil and USD index markets consistently receive net risk spillovers, particularly in the right tail of the distribution. Our results suggest that, on average, AI, and clean technology markets, along with the stock markets, are more likely to transfer risk spillovers compared to debt, currency, or other commodity markets. This positions the USD and crude oil as potential buffers against extreme risk transmissions emanating from the AI and clean technology sectors. This study highlights the complex risk dynamics and the pivotal role of oil in the interplay between emerging technologies and traditional financial markets.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.