An improved reinforcement learning-based differential evolution algorithm for combined economic and emission dispatch problems

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-29 DOI:10.1016/j.engappai.2024.109709
Yuan Wang , Xiaobing Yu , Wen Zhang
{"title":"An improved reinforcement learning-based differential evolution algorithm for combined economic and emission dispatch problems","authors":"Yuan Wang ,&nbsp;Xiaobing Yu ,&nbsp;Wen Zhang","doi":"10.1016/j.engappai.2024.109709","DOIUrl":null,"url":null,"abstract":"<div><div>To overcome challenges posed by escalating environmental pollution and climate change, the combined economic and emission dispatch problem is proposed to balance economic efficiency with emission cost. The primary objective of the problem is to ensure that emissions are minimized while optimal economic costs are achieved simultaneously. However, due to the nonlinear and nonconvex characteristics of the model, the optimization is confronted with many difficulties. Hence, an innovative improved reinforcement learning-based differential evolution algorithm is proposed in this article, with reinforcement learning seamlessly integrated into the differential evolution algorithm. Q-learning from reinforcement learning technique is utilized to dynamically adjust parameter settings and select appropriate mutation strategies, thereby boosting the algorithm's adaptability and overall performance. The effectiveness of the proposed algorithm is tested on thirty testing functions and combined economic and emission dispatch problems in comparison with the other five algorithms. According to the experimental results of testing functions, superior performance is consistently achieved by the proposed algorithm, with the highest adaptability exhibited and an average ranking of 1.4167. Its superiority is further demonstrated through Wilcoxon tests on results of testing functions and combined economic and emission dispatch problems with the proportion of 100%, and the proposed algorithm is significantly better than other algorithms at a 0.05 significance level. The superiority of the proposed algorithm in optimizing combined economic and emission dispatch problems demonstrates that the proposed algorithm is shown to be adaptable to complex optimization environments, which proves useful for industrial applications and artificial intelligence.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109709"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018670","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

To overcome challenges posed by escalating environmental pollution and climate change, the combined economic and emission dispatch problem is proposed to balance economic efficiency with emission cost. The primary objective of the problem is to ensure that emissions are minimized while optimal economic costs are achieved simultaneously. However, due to the nonlinear and nonconvex characteristics of the model, the optimization is confronted with many difficulties. Hence, an innovative improved reinforcement learning-based differential evolution algorithm is proposed in this article, with reinforcement learning seamlessly integrated into the differential evolution algorithm. Q-learning from reinforcement learning technique is utilized to dynamically adjust parameter settings and select appropriate mutation strategies, thereby boosting the algorithm's adaptability and overall performance. The effectiveness of the proposed algorithm is tested on thirty testing functions and combined economic and emission dispatch problems in comparison with the other five algorithms. According to the experimental results of testing functions, superior performance is consistently achieved by the proposed algorithm, with the highest adaptability exhibited and an average ranking of 1.4167. Its superiority is further demonstrated through Wilcoxon tests on results of testing functions and combined economic and emission dispatch problems with the proportion of 100%, and the proposed algorithm is significantly better than other algorithms at a 0.05 significance level. The superiority of the proposed algorithm in optimizing combined economic and emission dispatch problems demonstrates that the proposed algorithm is shown to be adaptable to complex optimization environments, which proves useful for industrial applications and artificial intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经济与排放联合调度问题的改进强化学习差分进化算法
为了应对日益严重的环境污染和气候变化带来的挑战,提出了经济与排放联合调度问题,以平衡经济效率与排放成本。该问题的主要目标是确保排放量最小化,同时实现最佳经济成本。然而,由于模型的非线性和非凸特性,优化面临着许多困难。因此,本文提出了一种创新的改进的基于强化学习的差分进化算法,将强化学习无缝集成到差分进化算法中。利用强化学习技术中的Q-learning动态调整参数设置,选择合适的突变策略,提高算法的适应性和整体性能。通过30个测试函数,结合经济和排放调度问题,与其他5种算法进行对比,验证了该算法的有效性。从测试函数的实验结果来看,本文提出的算法始终具有优异的性能,表现出最高的适应性,平均排名为1.4167。通过对测试函数结果的Wilcoxon检验,结合经济和排放调度问题,以100%的比例进一步证明了该算法的优越性,在0.05的显著性水平上,该算法显著优于其他算法。该算法在优化经济与排放联合调度问题上的优越性表明,该算法能够适应复杂的优化环境,可用于工业应用和人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1