Multimodal sentiment analysis based on multiple attention

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-11-29 DOI:10.1016/j.engappai.2024.109731
Hongbin Wang, Chun Ren, Zhengtao Yu
{"title":"Multimodal sentiment analysis based on multiple attention","authors":"Hongbin Wang,&nbsp;Chun Ren,&nbsp;Zhengtao Yu","doi":"10.1016/j.engappai.2024.109731","DOIUrl":null,"url":null,"abstract":"<div><div>The development of the Internet makes various types of data widely appear on various social platforms, multimodal data provides a new perspective for sentiment analysis. Although the data types are different, there are information expressing the same sentiment. The existing researches on extracting those information are static, and this means that there is a problem of extracting common information in a fixed amount. Therefore, to address this problem, we proposes a method named multimodal sentiment analysis based on multiple attention(MAMSA). Firstly, this method utilized the adaptive attention interaction module to dynamically determine the amount of information contributed by text and image features in multimodal fusion, and multimodal common representations are extracted through cross modal attention to improve the performance of each modal feature representation. Secondly, using sentiment information as a guide to extract text and image features related to sentiment. Finally, using hierarchical manner to fully learning the internal correlations between sentiment-text association representation, sentiment-image association representation, and multimodal common information to improve the performance of the model. We conducted extensive experiments using two public multimodal datasets, and the experimental results validated the availability of the proposed method.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109731"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401889X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of the Internet makes various types of data widely appear on various social platforms, multimodal data provides a new perspective for sentiment analysis. Although the data types are different, there are information expressing the same sentiment. The existing researches on extracting those information are static, and this means that there is a problem of extracting common information in a fixed amount. Therefore, to address this problem, we proposes a method named multimodal sentiment analysis based on multiple attention(MAMSA). Firstly, this method utilized the adaptive attention interaction module to dynamically determine the amount of information contributed by text and image features in multimodal fusion, and multimodal common representations are extracted through cross modal attention to improve the performance of each modal feature representation. Secondly, using sentiment information as a guide to extract text and image features related to sentiment. Finally, using hierarchical manner to fully learning the internal correlations between sentiment-text association representation, sentiment-image association representation, and multimodal common information to improve the performance of the model. We conducted extensive experiments using two public multimodal datasets, and the experimental results validated the availability of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多重注意的多模态情感分析
互联网的发展使得各种类型的数据广泛出现在各种社交平台上,多模态数据为情感分析提供了新的视角。尽管数据类型不同,但有一些信息表达了相同的情绪。现有的信息提取研究都是静态的,这意味着存在提取固定数量的公共信息的问题。因此,为了解决这一问题,我们提出了一种基于多注意的多模态情感分析方法(MAMSA)。该方法首先利用自适应注意力交互模块动态确定文本和图像特征在多模态融合中贡献的信息量,并通过跨模态注意力提取多模态共同表征,提高各模态特征表征的性能。其次,以情感信息为导向,提取与情感相关的文本和图像特征。最后,采用分层方式充分学习情感-文本关联表示、情感-图像关联表示和多模态公共信息之间的内在相关性,以提高模型的性能。我们使用两个公共的多模态数据集进行了大量的实验,实验结果验证了所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Adaptive model-agnostic meta-learning network for cross-machine fault diagnosis with limited samples Deep interval type-2 generalized fuzzy hyperbolic tangent system for nonlinear regression prediction A multi-scale feature fusion network based on semi-channel attention for seismic phase picking Editorial Board Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1