Identifying the frequency characteristics of the pressure measurement system with a pressure transmission tube using shock tube method

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Measurement Pub Date : 2024-11-26 DOI:10.1016/j.measurement.2024.116293
Bo Shi , Zhenjian Yao , Feng Li , Xiaosong Chen , Lei Yao , Yifan Ding
{"title":"Identifying the frequency characteristics of the pressure measurement system with a pressure transmission tube using shock tube method","authors":"Bo Shi ,&nbsp;Zhenjian Yao ,&nbsp;Feng Li ,&nbsp;Xiaosong Chen ,&nbsp;Lei Yao ,&nbsp;Yifan Ding","doi":"10.1016/j.measurement.2024.116293","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of the frequency characteristics of the pressure measurement system with a pressure transmission tube is inevitably affected by the structure size, the transfer model, and complex noise interferences, which limits the achievable accuracy of the dynamic pressure measurements in some special conditions, such as narrow installation space and high temperature environments. This paper proposes a data-driven calibration method for identifying the frequency characteristics of pressure measurement system with a pressure transmission tube by shock tube system. The distorted calibration signal is first corrected to reduce the effect of complex noise by combining the robust local mean decomposition and a main frequency dispersion component cluster scheme. A modified Levenberg-Marquardt algorithm is presented to establish the transfer model of the pressure measurement system based on the corrected calibration signal and the dynamic pressure generated by shock tube. The frequency characteristics of the pressure measurement system is then identified, and the dispersion of the calibration results is quantitatively evaluated through a kernel density estimation assisted Monte Carlo method. A series of calibration experiments for pressure measurement system with pressure transmission tubes are carried out by a shock tube system. Results show that the proposed method is able to reduce the influence of high-frequency noise and improve the calibration results of the multiple frequency characteristics of the pressure measurement system with a pressure transmission tube. Furthermore, the comparative experiments on the dispersion evaluation of calibration results also demonstrate the superiority of the proposed method over the Fourier transformation method in calibration reliability.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116293"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026322412402178X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of the frequency characteristics of the pressure measurement system with a pressure transmission tube is inevitably affected by the structure size, the transfer model, and complex noise interferences, which limits the achievable accuracy of the dynamic pressure measurements in some special conditions, such as narrow installation space and high temperature environments. This paper proposes a data-driven calibration method for identifying the frequency characteristics of pressure measurement system with a pressure transmission tube by shock tube system. The distorted calibration signal is first corrected to reduce the effect of complex noise by combining the robust local mean decomposition and a main frequency dispersion component cluster scheme. A modified Levenberg-Marquardt algorithm is presented to establish the transfer model of the pressure measurement system based on the corrected calibration signal and the dynamic pressure generated by shock tube. The frequency characteristics of the pressure measurement system is then identified, and the dispersion of the calibration results is quantitatively evaluated through a kernel density estimation assisted Monte Carlo method. A series of calibration experiments for pressure measurement system with pressure transmission tubes are carried out by a shock tube system. Results show that the proposed method is able to reduce the influence of high-frequency noise and improve the calibration results of the multiple frequency characteristics of the pressure measurement system with a pressure transmission tube. Furthermore, the comparative experiments on the dispersion evaluation of calibration results also demonstrate the superiority of the proposed method over the Fourier transformation method in calibration reliability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用激波管法对压力传输管压力测量系统的频率特性进行了辨识
带传压管压力测量系统的频率特性识别不可避免地会受到结构尺寸、传递模型以及复杂的噪声干扰的影响,从而限制了在一些特殊条件下,如狭窄的安装空间和高温环境下动态压力测量的可实现精度。本文提出了一种数据驱动的校准方法,通过激波管系统识别带有压力传输管的压力测量系统的频率特性。首先采用鲁棒局部均值分解和主频散分量聚类相结合的方法对扭曲的校准信号进行校正,降低了复杂噪声的影响。提出了一种改进的Levenberg-Marquardt算法,基于校正后的校准信号和激波管产生的动压力建立了压力测量系统的传递模型。然后,识别压力测量系统的频率特性,并通过核密度估计辅助蒙特卡罗方法定量评估校准结果的色散。利用激波管系统对压力传输管压力测量系统进行了一系列标定实验。结果表明,该方法能够降低高频噪声的影响,改善压力传输管压力测量系统多频特性的校准结果。此外,对标定结果的色散评价的对比实验也证明了该方法在标定可靠性方面优于傅里叶变换方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
期刊最新文献
Shape sensing technology based on fiber Bragg grating for flexible instrument Characterization and visualization of gas–liquid two-phase flow based on wire-mesh sensor Optimizing the quality characteristics of glass composite vias for RF-MEMS using central composite design, metaheuristics, and bayesian regularization-based machine learning Opto-mechanical-thermal integration design of the primary optical system for a tri-band aviation camera Calibration of multi-robot coordinates for collaborative wire arc additive manufacturing using cross-source 3D point cloud models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1