Optimal position and power allocation for RSMA multigroup multicast and multibeam UAV-assisted communication

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Physical Communication Pub Date : 2024-11-28 DOI:10.1016/j.phycom.2024.102563
Kehao Wang, Yingzhao Sun, Changzhen Li, Pei Liu
{"title":"Optimal position and power allocation for RSMA multigroup multicast and multibeam UAV-assisted communication","authors":"Kehao Wang,&nbsp;Yingzhao Sun,&nbsp;Changzhen Li,&nbsp;Pei Liu","doi":"10.1016/j.phycom.2024.102563","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates rate-splitting multiple access (RSMA) under probabilistic line-of-sight (PLoS) links in multigroup multicast and multigroup unmanned aerial vehicle assisted communication network (<span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>UAVCN), where a UAV transmits messages to several ground multicast groups under the influence of an external jammer. Specifically, we study a joint optimization problem involving the optimal UAV position, transmission power allocation and common rate allocation to maximize energy-efficiency (EE) of the UAV, which is non-convex. To tackle this non-convex problem, we propose a two-tier alternating optimization (AO) algorithm. Firstly, we employ the Block Coordinate Descent (BCD) methodology to decompose the original problem into UAV optimal position subproblem and power-rate allocation subproblem. Then, a particle swarm optimization algorithm with adaptive inertial weight (AIWPSO) is introduced to solve the UAV optimal position subproblem. In order to overcome the non-convexity of power-rate allocation subproblem, the successive convex approximation (SCA) and the slack variables method are used to obtain a suboptimal solution of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>UAVCN. Simulation results demonstrate that our proposed algorithm outperforms space-division multiple access (SDMA) and non-orthogonal multiple access (NOMA) in terms of enhancing EE.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"68 ","pages":"Article 102563"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002817","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates rate-splitting multiple access (RSMA) under probabilistic line-of-sight (PLoS) links in multigroup multicast and multigroup unmanned aerial vehicle assisted communication network (M3UAVCN), where a UAV transmits messages to several ground multicast groups under the influence of an external jammer. Specifically, we study a joint optimization problem involving the optimal UAV position, transmission power allocation and common rate allocation to maximize energy-efficiency (EE) of the UAV, which is non-convex. To tackle this non-convex problem, we propose a two-tier alternating optimization (AO) algorithm. Firstly, we employ the Block Coordinate Descent (BCD) methodology to decompose the original problem into UAV optimal position subproblem and power-rate allocation subproblem. Then, a particle swarm optimization algorithm with adaptive inertial weight (AIWPSO) is introduced to solve the UAV optimal position subproblem. In order to overcome the non-convexity of power-rate allocation subproblem, the successive convex approximation (SCA) and the slack variables method are used to obtain a suboptimal solution of M3UAVCN. Simulation results demonstrate that our proposed algorithm outperforms space-division multiple access (SDMA) and non-orthogonal multiple access (NOMA) in terms of enhancing EE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RSMA多组多播和多波束无人机辅助通信的最佳位置和功率分配
本文研究了多组组播和多组无人机辅助通信网络(M3UAVCN)中概率视距(PLoS)链路下的分频多址(RSMA),其中无人机在外部干扰器的影响下向多个地面组播组发送消息。具体来说,我们研究了一个涉及无人机最优位置、传输功率分配和公共速率分配的联合优化问题,以最大化无人机的能效(EE),该问题是非凸的。为了解决这个非凸问题,我们提出了一个两层交替优化(AO)算法。首先,采用块坐标下降(BCD)方法将原问题分解为无人机最优位置子问题和功率分配子问题;然后,引入自适应惯性权的粒子群优化算法求解无人机最优位置子问题。为了克服功率分配子问题的非凸性,采用逐次凸逼近法和松弛变量法得到了M3UAVCN的次优解。仿真结果表明,该算法在增强EE方面优于空分多址(SDMA)和非正交多址(NOMA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
期刊最新文献
Editorial Board Secure energy efficiency maximization in cell-free networks with sub-connected active reconfigurable intelligent surface A resource allocation algorithm based on hybrid spider wasp optimization for cognitive radio networks ADMM-RMCBF-Net: A neural network decision for distributed robust multi-cell beamforming Design and optimization of uplink multi-user time-reversal DSSS systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1