Engineering surface functional groups of 2D organic metal chalcogenides to regulate lubrication performance across scales

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL Tribology International Pub Date : 2024-11-26 DOI:10.1016/j.triboint.2024.110420
Haowen Luo , Yaoming Zhang , Zhuoxuan Lv , Shaozhen Luo , Yang Ou , Huidan Xue , Guan-E. Wang , Gang Xu , Jianxi Liu
{"title":"Engineering surface functional groups of 2D organic metal chalcogenides to regulate lubrication performance across scales","authors":"Haowen Luo ,&nbsp;Yaoming Zhang ,&nbsp;Zhuoxuan Lv ,&nbsp;Shaozhen Luo ,&nbsp;Yang Ou ,&nbsp;Huidan Xue ,&nbsp;Guan-E. Wang ,&nbsp;Gang Xu ,&nbsp;Jianxi Liu","doi":"10.1016/j.triboint.2024.110420","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) layered materials are widely used to enhance lubrication performance in various conditions due to their low friction and sliding interfaces. However, the uncontrolled modification and dispersion of functional groups on 2D materials limit their lubrication performance and ultra-low friction capabilities at different scales. Herein, we developed three Pb-based organic metal chalcogenides nanosheets, Pb(SPh-NH<sub>2</sub>/-COOH/-OH), with long-range ordered functional groups on the [PbS<sub>2</sub>] layer, to reduce friction and wear across scales. We organically modified these nanosheets prior to exfoliation, achieving micro-lateral and nano-vertical size. As ethanol additives, these nanosheets reduced the coefficient of friction (COF) and wear volume by over 44.8 % and 78.9 %, respectively. Dry tests demonstrated the Pb(SPh-OH) coating on SiO<sub>2</sub>/Si substrate reduced the COF from 0.65 to 0.07. Compared to SiO<sub>2</sub>/Si substrate, lateral force microscopy revealed friction reducing up to 57.5 %, 85.5 %, and 90.9 % for Pb(SPh-NH<sub>2</sub>/-COOH/-OH), respectively. These novel 2D materials provide a heuristic strategy for lubrication, suitable for anti-friction applications under different conditions across scales.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"204 ","pages":"Article 110420"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24011721","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) layered materials are widely used to enhance lubrication performance in various conditions due to their low friction and sliding interfaces. However, the uncontrolled modification and dispersion of functional groups on 2D materials limit their lubrication performance and ultra-low friction capabilities at different scales. Herein, we developed three Pb-based organic metal chalcogenides nanosheets, Pb(SPh-NH2/-COOH/-OH), with long-range ordered functional groups on the [PbS2] layer, to reduce friction and wear across scales. We organically modified these nanosheets prior to exfoliation, achieving micro-lateral and nano-vertical size. As ethanol additives, these nanosheets reduced the coefficient of friction (COF) and wear volume by over 44.8 % and 78.9 %, respectively. Dry tests demonstrated the Pb(SPh-OH) coating on SiO2/Si substrate reduced the COF from 0.65 to 0.07. Compared to SiO2/Si substrate, lateral force microscopy revealed friction reducing up to 57.5 %, 85.5 %, and 90.9 % for Pb(SPh-NH2/-COOH/-OH), respectively. These novel 2D materials provide a heuristic strategy for lubrication, suitable for anti-friction applications under different conditions across scales.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维有机金属硫族化合物的工程表面官能团调节跨尺度润滑性能
二维(2D)层状材料由于其低摩擦和滑动界面而被广泛用于提高各种条件下的润滑性能。然而,官能团在二维材料上不受控制的改性和分散限制了其在不同尺度上的润滑性能和超低摩擦性能。在此,我们开发了三个基于铅的有机金属硫族化合物纳米片,Pb(SPh-NH2/-COOH/-OH),在[PbS2]层上具有远程有序官能团,以减少摩擦和跨尺度磨损。我们在剥离之前对这些纳米片进行了有机修饰,实现了微横向和纳米垂直尺寸。作为乙醇添加剂,纳米片的摩擦系数和磨损体积分别降低了44.8%和78.9%以上。干燥试验表明,在SiO2/Si衬底上涂覆Pb(SPh-OH)可使COF从0.65降低到0.07。与SiO2/Si衬底相比,横向力显微镜显示Pb(SPh-NH2/-COOH/-OH)衬底的摩擦分别减少了57.5%、85.5%和90.9%。这些新型的二维材料提供了一种启发式的润滑策略,适用于不同条件下的跨尺度抗摩擦应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
期刊最新文献
Application of finite element analysis and computational fluid dynamics in machining AISI 4340 steel A novel Ni–Mo–W–V martensitic steel for hot working dies: Improved elevated–temperature mechanical properties and wear resistance via thermally stable MC nanoprecipitates Effect of Ti and TiN inter-layers on the composite interfacial wettability and composite abrasive wear resistance Investigation of current-carrying tribological properties and mechanisms of in-situ 2TiB2/Cu-3B composite Sintering temperature effects on mechanical properties and antagonist wear of 3 mol% yttria stabilized zirconia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1