Spectral–Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-11-30 DOI:10.1016/j.ejrs.2024.11.001
Junding Sun , Hongyuan Zhang , Xiaoxiao Ma , Ruinan Wang , Haifeng Sima , Jianlong Wang
{"title":"Spectral–Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification","authors":"Junding Sun ,&nbsp;Hongyuan Zhang ,&nbsp;Xiaoxiao Ma ,&nbsp;Ruinan Wang ,&nbsp;Haifeng Sima ,&nbsp;Jianlong Wang","doi":"10.1016/j.ejrs.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The dense and nearly continuous spectral bands in hyperspectral images result in strong inter-band correlations, which can diminish performance of the model in classification tasks. Moreover, most convolutional neural network-based methods for hyperspectral image classification typically depend on a fixed scale to extract spectral–spatial features, which ignore the detail features of some objects. To address the above issues, a novelty Spectral Spatial Adaptive Weighted Fusion and Residual Dense Network (S<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>AWF-RDN) is proposed for Hyperspectral image classification. Specifically, the proposed S<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>AWF-RDN consists of spectral–spatial adaptive weighted fusion module, multi-channel feature concatenation residual dense module, and spatial feature fusion module. Firstly, the spectral information optimization branch is developed to adjust the weights assigned to various spectral channels. Similarly, the spatial information optimization branch is developed to adjust the weights for different spatial regions. Secondly, to obtain rich spectral spatial information from different levels, multi-channel feature concatenation residual dense module has been proposed. In addition, a multi-channel feature concatenation block is designed guiding the model to extract spectral spatial information at different scales. Finally, spatial feature fusion module is introduced to retain more spatial information. The experimental outcomes illustrate that the proposed network model exhibits superior classification performance on three renowned hyperspectral image datasets. Furthermore, the efficacy of the proposed network model is further corroborated through comparative and ablation studies.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 1","pages":"Pages 21-33"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000772","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The dense and nearly continuous spectral bands in hyperspectral images result in strong inter-band correlations, which can diminish performance of the model in classification tasks. Moreover, most convolutional neural network-based methods for hyperspectral image classification typically depend on a fixed scale to extract spectral–spatial features, which ignore the detail features of some objects. To address the above issues, a novelty Spectral Spatial Adaptive Weighted Fusion and Residual Dense Network (S2AWF-RDN) is proposed for Hyperspectral image classification. Specifically, the proposed S2AWF-RDN consists of spectral–spatial adaptive weighted fusion module, multi-channel feature concatenation residual dense module, and spatial feature fusion module. Firstly, the spectral information optimization branch is developed to adjust the weights assigned to various spectral channels. Similarly, the spatial information optimization branch is developed to adjust the weights for different spatial regions. Secondly, to obtain rich spectral spatial information from different levels, multi-channel feature concatenation residual dense module has been proposed. In addition, a multi-channel feature concatenation block is designed guiding the model to extract spectral spatial information at different scales. Finally, spatial feature fusion module is introduced to retain more spatial information. The experimental outcomes illustrate that the proposed network model exhibits superior classification performance on three renowned hyperspectral image datasets. Furthermore, the efficacy of the proposed network model is further corroborated through comparative and ablation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Editorial Board Spectral–Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification New radio-seismic indicator for ELF seismic precursors detectability Estimation of above ground biomass of mangrove forest plot using terrestrial laser scanner Efficient bundle optimization for accurate camera pose estimation in mobile augmented reality systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1