Mass spectrometry imaging in food safety and authenticity: Overcoming challenges and exploring opportunities

IF 15.1 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Trends in Food Science & Technology Pub Date : 2024-11-21 DOI:10.1016/j.tifs.2024.104803
Sara Tortorella , Benjamin Bartels , Michele Suman , Ron M.A. Heeren , Laura Righetti
{"title":"Mass spectrometry imaging in food safety and authenticity: Overcoming challenges and exploring opportunities","authors":"Sara Tortorella ,&nbsp;Benjamin Bartels ,&nbsp;Michele Suman ,&nbsp;Ron M.A. Heeren ,&nbsp;Laura Righetti","doi":"10.1016/j.tifs.2024.104803","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The combination of molecular profiling capabilities and spatial information is accessible by mass spectrometry imaging (MSI), which has gained substantial importance over the last 20 years in the analytical community. The number of applications of MSI on food has increased remarkably in recent years, enabling us to visualize the spatial distributions for a wide range of chemical compounds in complex samples, such as fresh and processed food. Many endogenous food components and bioactive compounds have been successfully visualized <em>in situ</em> in cereals, fruits, vegetables and animal-based food. However, only limited data are available for MSI for food authenticity and safety.</div></div><div><h3>Scope and approach</h3><div>This review explores the current state and the potential unexplored benefits of MSI in food safety and authenticity, addressing the gaps and highlighting opportunities for further research and development.</div></div><div><h3>Key findings and conclusions</h3><div>MSI has tremendous potential to improve food safety and authenticity assessment by providing spatially resolved molecular information on contaminants, toxins, and adulterants in food products. Addressing research gaps related to sensitivity, quantitative analysis and integration with multi-omics approaches, is essential to realize the full benefits of MSI in food safety applications. MSI technology is expected to improve food safety control measures and advance our understanding of food system within a spatial context, providing essential spatial information that can subsequently be assessed with faster analytical techniques. This will ultimately contribute to improved human health and consumer confidence in the food supply chain.</div></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"155 ","pages":"Article 104803"},"PeriodicalIF":15.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424004795","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The combination of molecular profiling capabilities and spatial information is accessible by mass spectrometry imaging (MSI), which has gained substantial importance over the last 20 years in the analytical community. The number of applications of MSI on food has increased remarkably in recent years, enabling us to visualize the spatial distributions for a wide range of chemical compounds in complex samples, such as fresh and processed food. Many endogenous food components and bioactive compounds have been successfully visualized in situ in cereals, fruits, vegetables and animal-based food. However, only limited data are available for MSI for food authenticity and safety.

Scope and approach

This review explores the current state and the potential unexplored benefits of MSI in food safety and authenticity, addressing the gaps and highlighting opportunities for further research and development.

Key findings and conclusions

MSI has tremendous potential to improve food safety and authenticity assessment by providing spatially resolved molecular information on contaminants, toxins, and adulterants in food products. Addressing research gaps related to sensitivity, quantitative analysis and integration with multi-omics approaches, is essential to realize the full benefits of MSI in food safety applications. MSI technology is expected to improve food safety control measures and advance our understanding of food system within a spatial context, providing essential spatial information that can subsequently be assessed with faster analytical techniques. This will ultimately contribute to improved human health and consumer confidence in the food supply chain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Food Science & Technology
Trends in Food Science & Technology 工程技术-食品科技
CiteScore
32.50
自引率
2.60%
发文量
322
审稿时长
37 days
期刊介绍: Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry. Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.
期刊最新文献
Mastering the methods of modifying fish protein: Expanding its application in the food industry Zein-based nanoparticles and nanofibers: Co-encapsulation, characterization, and application in food and biomedicine Physical fields assisted frying technologies for reducing oil content of fried food Causal inference in food safety: Methods, applications, and future prospects Pectin and pectic oligosaccharides (POS): Recent advances for extraction, production, and its prebiotic potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1